\[Схематический\ рисунок.\]
\[Дано:\ \ \]
\[OD - биссектриса\ \angle AOB;\]
\[OF - биссектриса\ \angle BOC;\]
\[\angle AOD\ :\angle FOC = 2\ :7.\]
\[Найти:\]
\[\angle AOD;\ \angle FOC.\]
\[Решение:\]
\[1)\ \angle AOD = \frac{2}{7}\angle FOC.\]
\[2)\ Сумма\ смежных\ углов:\]
\[\angle AOC = \angle AOB + \angle BOC\]
\[180{^\circ} = 2\angle AOD + 2\angle FOC\]
\[\angle AOD + \angle FOC = 90{^\circ}\]
\[\frac{2}{7}\angle FOC + \angle FOC = 90{^\circ}\]
\[2\angle FOC + 7\angle FOC = 630{^\circ}\]
\[9\angle FOC = 630{^\circ}\]
\[\angle FOC = 70{^\circ}.\]
\[\angle AOD = \frac{2}{7} \bullet 70{^\circ} = 20{^\circ}.\]
\[Ответ:\ \ \angle AOD = 20{^\circ};\ \]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \angle FOC = 70{^\circ}.\]