Решебник по геометрии 11 класс. Атанасян ФГОС 845

Авторы:
Год:2023
Тип:учебник

845

\[\boxed{\mathbf{845.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]

\[Дано:\ \ \]

\[\mathrm{\Delta}ABC;\ \ \ \]

\[вневписанные\ окружности\ \]

\[радиусом\ r_{a},r_{b},r_{c};\]

\[вписанная\ окружность\ \]

\[радиусом\ r;\ \]

\[BC = a.\]

\[Доказать:\ \text{\ \ }\]

\[\textbf{а)}\ S_{\text{ABC}} = r_{a}(p - a);\ \ \]

\[\textbf{б)}\ \ S = \sqrt{r \bullet r_{a} \bullet r_{b} \bullet r_{c}};\ \ \]

\[\frac{1}{r_{a}} + \frac{1}{r_{b}} + \frac{1}{r_{c}} = \frac{1}{r}.\]

\[Доказательство.\]

\[\textbf{а)}\ Пусть\ O - центр\ \]

\[вневписанной\ окружности;\ \]

\[AB = c,\ BC = a,\ AC = b.\]

\[1)\ AP = AT,\ CH = CT,\]

\[BH = BP = k\ \]

\[(как\ касательные\ из\ одной\ точки):\]

\[\ AP = c + k;\ \ \]

\[AT = AC + BC - BH =\]

\[= b + a - k;\]

\[b + a - k = c + k\]

\[k = \frac{b + a - c}{2} = p - c;\ \]

\[где\ p - полупериметр.\]

\[AT = AP = c + k = c + p - c =\]

\[= p;\ \ \ \]

\[CH = CT = a - k.\]

\[2)\ S_{\text{APOT}} = S_{\text{AOP}} + S_{\text{AOT}} =\]

\[= \frac{1}{2}r_{a} \bullet p + \frac{1}{2}r_{a} \bullet p = r_{a}\text{p.}\]

\[3)\ S_{\text{OPBCT}} =\]

\[= S_{\text{OPB}} + S_{\text{BOH}} + S_{\text{OHC}} + S_{\text{OCT}} =\]

\[= r_{a} \bullet k + r_{a}(a - k) = r_{a} \bullet a.\]

\[4)\ Таким\ образом:\]

\[S_{\text{ABC}} = S_{\text{APOT}} - S_{\text{OPBCT}} =\]

\[= r_{a}p - r_{a}a = r_{a}(p - a).\]

\[Что\ и\ требовалось\ доказать.\]

\[\textbf{б)}\ S_{\text{ABC}} = r_{a}(p - a) = pr:\ \]

\[\frac{S_{\text{ABC}}}{r} = p;\]

\[\ \frac{S_{\text{ABC}}}{r_{a}} = p - a.\]

\[Аналогично:\ \ \]

\[\frac{S_{\text{ABC}}}{r_{b}} = p - b\ \ \ и\ \ \frac{S_{\text{ABC}}}{r_{c}} = p - c.\]

\[1)\ S_{\text{ABC}} =\]

\[= \sqrt{p(p - a)(p - b)(p - c)} =\]

\[= \sqrt{\frac{S_{\text{ABC}}}{r} \bullet \frac{S_{\text{ABC}}}{r_{a}} \bullet \frac{S_{\text{ABC}}}{r_{b}} \bullet \frac{S_{\text{ABC}}}{r_{c}}} =\]

\[= \frac{S_{\text{ABC}}^{2}}{\sqrt{rr_{a}r_{b}r_{c}}}\]

\[S_{\text{ABC}} = \sqrt{rr_{a}r_{b}r_{c}}.\]

\[2)\ S_{\text{ABC}} = r_{a}(p - a) = pr:\]

\[\frac{1}{3} = \frac{p - a}{S_{\text{ABC}}};\]

\[\ \frac{1}{r_{a}} = \frac{p - a}{S_{\text{ABC}}}.\]

\[Аналогично:\ \ \]

\[\frac{1}{r_{b}} = \frac{p - b}{S_{\text{ABC}}};\text{\ \ }\]

\[\frac{1}{r_{c}} = \frac{p - c}{S_{\text{ABC}}}.\]

\[3)\ \frac{1}{r_{a}} + \frac{1}{r_{b}} + \frac{1}{r_{c}} =\]

\[= \frac{(p - a) + (p - b) + (p - c)}{S_{\text{ABC}}} =\]

\[= \frac{3p - (a + b + c)}{S_{\text{ABC}}} =\]

\[= \frac{3p - 2p}{S_{\text{ABC}}} = \frac{p}{S_{\text{ABC}}} = \frac{1}{r}.\]

\[Что\ и\ требовалось\ доказать.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам