\[\boxed{\mathbf{766.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[DABC - правильная\ \]
\[треугольная\ пирамида;\ \]
\[DO = 3\ см;\]
\[DA = 5\ см;\]
\[BM = MC.\]
\[Решение.\]
\[\textbf{а)}\ В\ \mathrm{\Delta}\ AOD - прямоугольном:\]
\[AO = \sqrt{AD^{2} - DO^{2}} = \sqrt{25 - 9} =\]
\[= 4\ см.\]
\[\mathrm{\Delta}ABC - равносторонний:\]
\[AO - радиус\ описанной\ \]
\[окружности.\]
\[R = AO = \frac{\text{AB}}{\sqrt{3}}\]
\[AB = AO\sqrt{3} = 4\sqrt{3}\ см.\]
\[S_{\text{ABC}} = \frac{1}{2}AB \bullet BC \bullet \sin{60{^\circ}} =\]
\[= \frac{1}{2} \bullet 4\sqrt{3} \bullet 4\sqrt{3} \bullet \frac{\sqrt{3}}{2} = 12\sqrt{3}\ см^{2}.\]
\[В\ \mathrm{\Delta}ADB\ опустим\ высоту\ DH;\ \]
\[\mathrm{\Delta}DHA - прямоугольный:\]
\[DH = \sqrt{AD^{2} - AH^{2}} =\]
\[= \sqrt{25 - \left( 2\sqrt{3} \right)^{2}} = \sqrt{13}\ см.\]
\[S_{\text{ADB}} = DH \bullet AH =\]
\[= \sqrt{13} \bullet 2\sqrt{3}\ см^{2}.\]
\[S_{пов} = 3S_{\text{ADB}} + S_{\text{ABC}} =\]
\[= 3 \bullet 2\sqrt{3} \bullet \sqrt{13} + 12\sqrt{3} =\]
\[= 6\sqrt{3} \bullet \left( \sqrt{13} + 2 \right)\ см^{2}.\]
\[\textbf{б)}\ Объем\ пирамиды:\]
\[V = \frac{1}{3}DO \bullet S_{\text{ABC}} = \frac{1}{3} \bullet 3 \bullet 12\sqrt{3} =\]
\[= 12\sqrt{3}\ см^{3}.\]
\[\textbf{в)}\ Искомый\ угол\ \angle DAO = a.\]
\[В\ \mathrm{\Delta}DAO - прямоугольном:\]
\[\sin a = \frac{\text{DO}}{\text{AD}} = \frac{3}{5} = 0,6\ \]
\[a = \arcsin{0,6}.\]
\[\textbf{г)}\ DH \in DAB\ \ и\ \ HO \in ABCD:\ \]
\[\angle\left( \text{DAB} \right)\left( \text{ABCD} \right) = \angle DHO = a.\]
\[В\ \mathrm{\Delta}AHO - прямоугольном:\]
\[OH = \sqrt{AO^{2} - AH^{2}} =\]
\[= \sqrt{16 - \left( 2\sqrt{3} \right)^{2}} = \sqrt{4} = 2\ см.\]
\[В\ \mathrm{\Delta}DHO - прямоугольном:\]
\[\text{tg}a = \frac{\text{DO}}{\text{OH}} = \frac{3}{2} = 1,5\]
\[a = arctg\ 1,5.\]
\[\textbf{д)}\ OM = OH = 2;\text{\ \ }\]
\[MA = \frac{S_{\text{ABC}}}{\frac{1}{2}\text{AB}} = \frac{12\sqrt{3}}{2\sqrt{3}} = 6\ см;\]
\[\ \frac{1}{2}\left( \overrightarrow{\text{DB}} + \overrightarrow{\text{DC}} \right) \bullet \overrightarrow{\text{MA}} = \overrightarrow{\text{DM}} \bullet \overrightarrow{\text{MA}} =\]
\[= DM \bullet MA \bullet \cos{\angle DMA} =\]
\[= 6 \bullet OM = DM \bullet 6 \bullet \frac{\text{OM}}{\text{DM}} =\]
\[= 6 \bullet 2 = 12.\]
\[\textbf{е)}\ \ V_{пир} = \frac{1}{3} \bullet S_{пов} \bullet R_{впис\ шара}:\]
\[R = \frac{3V}{S};\]
\[R = \frac{3 \bullet 12\sqrt{3}}{6\sqrt{3} \bullet \left( \sqrt{13} + 2 \right)} =\]
\[= \frac{6}{\sqrt{13} + 2}\ см.\]