Решебник по геометрии 11 класс. Атанасян ФГОС 684

Авторы:
Год:2023
Тип:учебник

684

\[\boxed{\mathbf{684.}еуроки - ответы\ на\ пятёрку}\]

\[\textbf{а)}\ \overrightarrow{\text{AD}} \cdot \overrightarrow{B_{1}C_{1}} =\]

\[= \left| \overrightarrow{\text{AD}} \right| \cdot \left| \overrightarrow{B_{1}C_{1}} \right| \cdot \cos{\angle\left( \overrightarrow{\text{AD}};\overrightarrow{B_{1}C_{1}} \right)};\]

\[\left| \overrightarrow{\text{AD}} \right| = \left| \overrightarrow{B_{1}C_{1}} \right| = a;\ \]

\[\cos{\angle\left( \overrightarrow{\text{AD}};\ \overrightarrow{B_{1}C_{1}} \right)} = 1;\]

\[\overrightarrow{\text{AD}} \cdot \overrightarrow{B_{1}C_{1}} = a^{2}.\]

\[\textbf{б)}\ \overrightarrow{\text{AC}} = - \overrightarrow{C_{1}A_{1}};\ \ \]

\[\cos{\angle\left( \overrightarrow{\text{AC}};\overrightarrow{C_{1}A_{1}} \right)} = \cos{180{^\circ}} =\]

\[= - 1;\]

\[\left| \overrightarrow{\text{AC}} \right| = \left| \overrightarrow{C_{1}A_{1}} \right| = \sqrt{a^{2} + a^{2}} =\]

\[= a\sqrt{2};\]

\[\overrightarrow{\text{AC}} \cdot \overrightarrow{C_{1}A_{1}} = a\sqrt{2} \cdot \sqrt{2}a \cdot ( - 1) =\]

\[= - 2a^{2}.\]

\[\textbf{в)}\ \overrightarrow{\text{DB}}\bot\overrightarrow{\text{AC}} - по\ теореме\ о\ трех\ \]

\[перпендикулярах.\]

\[\cos{\angle\left( \overrightarrow{D_{1}B};\overrightarrow{\text{AC}} \right)} = \cos{90{^\circ}} = 0;\]

\[\overrightarrow{D_{1}B} \cdot \overrightarrow{\text{AC}} = 0.\]

\[\textbf{г)}\ ⊿A_{1}BC_{1} - равносторонний;\]

\[\left| \overrightarrow{BA_{1}} \right| = \left| \overrightarrow{BC_{1}} \right| = \sqrt{a^{2} + a^{2}} =\]

\[= a\sqrt{2};\]

\[\angle A_{1}BC_{1} = 60{^\circ};\]

\[\cos{\angle\left( \overrightarrow{BA_{1}};\overrightarrow{BC_{1}} \right)} = \cos{60{^\circ}} = \frac{1}{2};\]

\[\overrightarrow{BA_{1}} \cdot \overrightarrow{BC_{1}} =\]

\[= \left| \overrightarrow{BA_{1}} \right| \cdot \left| \overrightarrow{BC_{1}} \right| \cdot \cos{\angle\left( \overrightarrow{BA_{1}};\overrightarrow{BC_{1}} \right)} =\]

\[= a\sqrt{2} \cdot a\sqrt{2} \cdot \frac{1}{2} = a^{2}.\]

\[\textbf{д)}\ \overrightarrow{A_{1}O_{1}} = \frac{1}{2}\overrightarrow{A_{1}C_{1}};\ \]

\[\cos{\angle(\overrightarrow{A_{1}O_{1}};\overrightarrow{A_{1}C_{1}})} = \cos{0{^\circ}} = 1;\]

\[\left| \overrightarrow{A_{1}O_{1}} \right| = \frac{1}{2}\left| \overrightarrow{A_{1}C_{1}} \right| = \frac{1}{2}a\sqrt{2} =\]

\[= \frac{a\sqrt{2}}{2};\]

\[\overrightarrow{A_{1}O_{1}} \cdot \overrightarrow{A_{1}C_{1}} = a\sqrt{2} \cdot \frac{a\sqrt{2}}{2} = a^{2}.\]

\[\textbf{е)}\ \overrightarrow{D_{1}O_{1}} = \frac{1}{2}\overrightarrow{D_{1}B_{1}};\]

\[\overrightarrow{B_{1}O_{1}} = \frac{1}{2}\overrightarrow{B_{1}D_{1}} = - \frac{1}{2}\overrightarrow{D_{1}B_{1}} =\]

\[= - \overrightarrow{D_{1}O_{1}};\]

\[\angle\left( D_{1}O_{1};B_{1}O_{1} \right) = 180{^\circ};\ \ \ \]

\[\cos{180{^\circ}} = - 1;\]

\[\left| \overrightarrow{D_{1}O_{1}} \right| = \left| \overrightarrow{B_{1}O_{1}} \right| = \frac{1}{2}\sqrt{a^{2} + a^{2}} =\]

\[= \frac{a\sqrt{2}}{2};\]

\[\overrightarrow{D_{1}O_{1}} \cdot \overrightarrow{B_{1}O_{1}} =\]

\[= \frac{1}{2} \cdot \sqrt{2}a \cdot \frac{a\sqrt{2}}{2} \cdot ( - 1) = - \frac{a^{2}}{2}.\]

\[\textbf{ж)}\ ⊿BB_{1}O_{1} - прямоугольный;\]

\[⊿BA_{1}C_{1} - равносторонний.\]

\[\left| \overrightarrow{BB_{1}} \right| = a;\ \ \left| \overrightarrow{B_{1}O_{1}} \right| =\]

\[= \frac{1}{2}\sqrt{a^{2} + a^{2}} = \frac{a\sqrt{2}}{2}.\]

\[\left| \overrightarrow{BO_{1}} \right| = \sqrt{a^{2} + \left( \frac{a\sqrt{2}}{2} \right)^{2}} = \sqrt{\frac{3}{2}}a;\]

\[\overrightarrow{C_{1}B} = \sqrt{a^{2} + a^{2}} = a\sqrt{2}.\]

\[\angle\left( \overrightarrow{BO_{1}};\overrightarrow{C_{1}B} \right) =\]

\[= 180{^\circ} - \angle\left( \overrightarrow{BO_{1}};\ \overrightarrow{BC_{1}} \right) =\]

\[= 180{^\circ} - \angle O_{1}BC_{1};\]

\[\angle O_{1}BC_{1} = \frac{1}{2}\angle A_{1}BC_{1} = \frac{1}{2} \cdot 60{^\circ} =\]

\[= 30{^\circ};\]

\[\overrightarrow{BO_{1}} \cdot \overrightarrow{C_{1}B} =\]

\[= \left| \overrightarrow{BO_{1}} \right| \cdot \left| \overrightarrow{C_{1}B} \right| \cdot \cos(180{^\circ} - 30{^\circ}) =\]

\[= \sqrt{\frac{3}{2}}a \cdot a\sqrt{2} \cdot \left( - \frac{\sqrt{3}}{2} \right) = - \frac{3}{2}a^{2}.\]


Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам