Решебник по геометрии 11 класс. Атанасян ФГОС 675

Авторы:
Год:2023
Тип:учебник

675

\[\boxed{\mathbf{675.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]

\[A( - 1;2;3);\ \ B( - 2;1;2);\ \ \]

\[C(0; - 1;1).\]

\[\textbf{а)}\ Oxy.\]

\[K(x;y;z) - равноудалена\ от\ \]

\[точек\ A;B;C:\]

\[\left| \overrightarrow{\text{AK}} \right| =\]

\[= \sqrt{( - 1 - x)^{2} + (2 - y)^{2} + 3^{2}}\]

\[\left| \overrightarrow{\text{BK}} \right| =\]

\[= \sqrt{( - 2 - x)^{2} + (1 - y)^{2} + 2^{2}}\]

\[\left| \overrightarrow{\text{CK}} \right| = \sqrt{x^{2} + ( - 1 - y)^{2} + 1^{2}}\]

\[AK = BK:\]

\[1 + 2x + x^{2} + 4 - 4y + y^{2} + 9 =\]

\[= 4 + 4x + x^{2} + 1 - 2y + y^{2} + 4\]

\[2x - 4y + 14 = 4x - 2y + 9\]

\[2x + 2y = 5\]

\[AK = CK:\]

\[2x - 4y + 14 =\]

\[= x^{2} + 1 + 2y + y^{2} + 1\]

\[2x - 4y + 14 = 2y + 2\]

\[2x - 6y = - 12\]

\[\left\{ \begin{matrix} 2x + 2y = 5\ \ \ \ \ \\ 2x - 6y = - 12 \\ \end{matrix} \right.\ ( - )\]

\[8y = 17\]

\[y = \frac{17}{8}.\]

\[2x + 2 \cdot \frac{17}{8} = 5\]

\[2x = 5 - \frac{17}{4}\]

\[2x = \frac{3}{4}\]

\[x = \frac{3}{8}.\]

\[K\left( \frac{3}{8};\ \frac{17}{8};0 \right).\]

\[\textbf{б)}\ Oyz.\]

\[P(0;y;z) - равноудалена\ от\ \]

\[точек\ A;B;C:\]

\[AP = BP;\ \ AP = CP;\ \ BP = CP.\]

\[\left| \overrightarrow{\text{AP}} \right| =\]

\[= \sqrt{( - 1)^{2} + (2 - y)^{2} + (3 - z)^{2}};\]

\[\left| \overrightarrow{\text{BP}} \right| =\]

\[= \sqrt{( - 2)^{2} + (1 - y)^{2} + (2 - z)^{2}};\]

\[\left| \overrightarrow{\text{CP}} \right| =\]

\[= \sqrt{0 + ( - 1 - y)^{2} + (1 - z)^{2}.}\]

\[AP = BP:\]

\[1 + 4 - 4y + y^{2} + 9 - 6z + z^{2} =\]

\[= 4 + 1 - 2y + y^{2} + 4 - 4z + z^{2}\]

\[- 4y - 6z + 14 = - 2y - 4z + 9\]

\[2y + 2z = 5.\]

\[BP = CP:\]

\[- 4y - 6z + 14 =\]

\[= 1 + 2y + y^{2} + 1 - 2z + z^{2}\]

\[- 4y - 6z + 14 = 2y - 2z + 2\]

\[6y + 4z = 12\ \ |\ :2\]

\[3y + 2z = 6.\]

\[\left\{ \begin{matrix} 2y + 2z = 5 \\ 3y + 2z = 6 \\ \end{matrix} \right.\ ( - )\]

\[- y = - 1\]

\[y = 1.\]

\[2z = 5 - 2y = 5 - 2 \cdot 1 = 3\]

\[z = 1,5.\]

\[P(0;1;1,5).\]

\[\textbf{в)}\ Ozx.\]

\[R(x;0;z) - равноудалена\ от\ \ \]

\[точек\ A;B;C:\]

\[AR = BR;\ \ AR = CR.\]

\[\left| \overrightarrow{\text{AR}} \right| =\]

\[= \sqrt{( - 1 - x)^{2} + 2^{2} + (3 - z)^{2}};\]

\[\left| \overrightarrow{\text{BR}} \right| =\]

\[= \sqrt{( - 2 - x)^{2} + 1^{2} + (2 - z)^{2}};\]

\[\left| \overrightarrow{\text{CR}} \right| =\]

\[= \sqrt{x^{2} + ( - 1)^{2} + (1 - z)^{2}}.\]

\[AR = BR:\]

\[1 + 2x + x^{2} + 4 + 9 - 6z + z^{2} =\]

\[= 4 + 4x + x^{2} + 1 + 4 - 4z + z^{2}\]

\[2x - 6z + 14 = 4x - 4z + 9\]

\[2x + 2z = 5.\]

\[AR = CR:\]

\[2x - 6z + 14 =\]

\[= x^{2} + 1 + 1 - 2z + z^{2}\]

\[2x - 4z = - 12.\]

\[\left\{ \begin{matrix} 2x + 2z = 5\ \ \ \ \ \\ 2x - 4z = - 12 \\ \end{matrix} \right.\ ( - )\]

\[6z = 17\]

\[z = \frac{17}{6}.\]

\[2x + 2 \cdot \frac{17}{6} = 5\]

\[2x = 5 - \frac{17}{3} = - \frac{2}{3}\]

\[x = - \frac{1}{3}.\]

\[R\left( - \frac{1}{3};0;\frac{17}{6} \right).\]


Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам