Решебник по геометрии 11 класс. Атанасян ФГОС 621

Авторы:
Год:2023
Тип:учебник

621

\[\boxed{\mathbf{621.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]

\[Дано:\ \]

\[\ \mathrm{\Delta}ABC;\ \ \]

\[точки\ A_{1},B_{1}\ и\ C_{1} - середины\ \]

\[сторон\ BC,AC\ и\ AB;\]

\[O - произвольная\ точка\ \]

\[пространства.\]

\[Доказать:\ \ \]

\[\overrightarrow{OA_{1}} + \overrightarrow{OB_{1}} + \overrightarrow{OC_{1}} =\]

\[= \overrightarrow{\text{OA}} + \overrightarrow{\text{OB}} + \overrightarrow{\text{OC}}.\]

\[Доказательство.\]

\[1)\ \overrightarrow{OA_{1}} = \overrightarrow{\text{OC}} + \overrightarrow{CA_{1}} = \overrightarrow{\text{OB}} + \overrightarrow{BA_{1}}:\ \]

\[2\overrightarrow{OA_{1}} = \overrightarrow{\text{OC}} + \overrightarrow{CA_{1}} + \overrightarrow{\text{OB}} + \overrightarrow{BA_{1}};\]

\[\overrightarrow{CA_{1}} = - \overrightarrow{BA_{1}}.\]

\[Отсюда:\]

\[2\overrightarrow{OA_{1}} = \overrightarrow{\text{OC}} + \overrightarrow{\text{OB}}.\]

\[2)\ \overrightarrow{OB_{1}} = \overrightarrow{\text{OC}} + \overrightarrow{CB_{1}} = \overrightarrow{\text{OA}} + \overrightarrow{AB_{1}}:\]

\[2\overrightarrow{OB_{1}} = \overrightarrow{\text{OC}} + \overrightarrow{CB_{1}} + \overrightarrow{\text{OA}} + \overrightarrow{AB_{1}};\]

\[\overrightarrow{CB_{1}} = - \overrightarrow{AB_{1}}.\]

\[Отсюда:\]

\[2\overrightarrow{OA_{1}} = \overrightarrow{\text{OC}} + \overrightarrow{\text{OA}}.\]

\[3)\ \overrightarrow{OC_{1}} = \overrightarrow{\text{OB}} + \overrightarrow{BC_{1}} = \overrightarrow{\text{OA}} + \overrightarrow{AC_{1}}:\]

\[2\overrightarrow{OC_{1}} = \overrightarrow{\text{OB}} + \overrightarrow{BC_{1}} + \overrightarrow{\text{OA}} + \overrightarrow{AC_{1}};\]

\[\overrightarrow{BC_{1}} = - \overrightarrow{AC_{1}}.\]

\[Отсюда:\]

\[2\overrightarrow{OC_{1}} = \overrightarrow{\text{OA}} + \overrightarrow{\text{OB}}.\]

\[4)\ Таким\ образом:\]

\[2\left( \overrightarrow{OA_{1}} + \overrightarrow{OB_{1}} + \overrightarrow{OC_{1}} \right) =\]

\[= 2\left( \overrightarrow{\text{OA}} + \overrightarrow{\text{OB}} + \overrightarrow{\text{OC}} \right).\]

\[Что\ и\ требовалось\ доказать.\]


Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам