\[\boxed{\mathbf{583.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ABCD - трапеция;\]
\[AM = MB;\]
\[DN = NC;\ \ \]
\[O - произвольная\ точка\ \]
\[пространства.\]
\[Выразить:\]
\[вектор\ \overrightarrow{\text{OM}} - \overrightarrow{\text{ON}}\ через\ векторы\ \]
\[\overrightarrow{\text{AD}}\ и\ \overrightarrow{\text{BC}}.\]
\[Решение.\]
\[1)\ \overrightarrow{\text{ON}} = \overrightarrow{\text{OA}} + \overrightarrow{\text{AD}} + \overrightarrow{\text{DN}};\ \ \ \text{\ \ }\]
\[\overrightarrow{\text{OM}} = \overrightarrow{\text{OA}} + \overrightarrow{\text{AM}}:\]
\[\overrightarrow{\text{OM}} - \overrightarrow{\text{ON}} =\]
\[= \overrightarrow{\text{OA}} + \overrightarrow{\text{AM}} - \overrightarrow{\text{OA}} - \overrightarrow{\text{AD}} - \overrightarrow{\text{DN}} =\]
\[= \overrightarrow{\text{AM}} + \overrightarrow{\text{DA}} + \overrightarrow{\text{ND}} =\]
\[= \overrightarrow{\text{ND}} + \overrightarrow{\text{DA}} + \overrightarrow{\text{AM}} = \overrightarrow{\text{NM}}.\]
\[2)\ \overrightarrow{\text{NM}} = \overrightarrow{\text{ND}} + \overrightarrow{\text{DA}} + \overrightarrow{\text{AM}};\ \ \ \ \]
\[\overrightarrow{\text{NM}} = \overrightarrow{\text{NC}} + \overrightarrow{\text{CB}} + \overrightarrow{\text{BM}};\]
\[\overrightarrow{\text{ND}} = - \overrightarrow{\text{NC}};\ \ \ \ \overrightarrow{\text{AM}} = - \overrightarrow{\text{BM}}:\]
\[3)\ \overrightarrow{\text{DA}} = - \overrightarrow{\text{AD}};\ \ \ \ \overrightarrow{\text{CB}} = - \overrightarrow{\text{BC}}:\]
\[2\overrightarrow{\text{NM}} = - \overrightarrow{\text{AD}} - \overrightarrow{\text{BC}}.\]
\[Отсюда:\]
\[\overrightarrow{\text{OM}} - \overrightarrow{\text{ON}} = \overrightarrow{\text{NM}} =\]
\[= - \frac{1}{2}\left( \overrightarrow{\text{AD}} + \overrightarrow{\text{BC}} \right).\]
\[Ответ:\ - \frac{1}{2}(\overrightarrow{\text{AD}} + \overrightarrow{\text{BC}})\]