\[\boxed{\mathbf{568.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ABCD - параллелограмм;\ \]
\[O - произвольная\ точка.\]
\[Доказать:\]
\[\textbf{а)}\ \overrightarrow{\text{OB}} - \overrightarrow{\text{OA}} = \overrightarrow{\text{OC}} - \overrightarrow{\text{OD}};\ \ \]
\[\textbf{б)}\ \overrightarrow{\text{OB}} - \overrightarrow{\text{OC}} = \overrightarrow{\text{DA}}.\]
\[Доказательство.\]
\[\textbf{а)}\ По\ правилу\ треугольника:\]
\[\overrightarrow{\text{OB}} + \overrightarrow{\text{BA}} = \overrightarrow{\text{OA}};\ \ \]
\[\overrightarrow{\text{OC}} + \overrightarrow{\text{CD}} = \overrightarrow{\text{OD}}.\]
\[Отсюда:\]
\[\overrightarrow{\text{OB}} - \overrightarrow{\text{OA}} = \overrightarrow{\text{OB}} - \left( \overrightarrow{\text{OB}} + \overrightarrow{\text{BA}} \right) =\]
\[= - \overrightarrow{\text{BA}} = \overrightarrow{\text{AB}};\]
\[\overrightarrow{\text{OC}} - \overrightarrow{\text{OD}} = \overrightarrow{\text{OC}} - \left( \overrightarrow{\text{OC}} + \overrightarrow{\text{CD}} \right) =\]
\[= - \overrightarrow{\text{CD}} = \overrightarrow{\text{CD}}.\]
\[\overrightarrow{\text{AB}} = \overrightarrow{\text{CD}}\ \]
\[(так\ как\ AB \parallel CD\ \ и\ \ AB = CD):\]
\[\overrightarrow{\text{OB}} - \overrightarrow{\text{OA}} = \overrightarrow{\text{OC}} - \overrightarrow{\text{OD}}.\]
\[Что\ и\ требовалось\ доказать.\]
\[\textbf{б)}\ \overrightarrow{\text{OB}} + \overrightarrow{\text{BC}} = \overrightarrow{\text{OC}}\ \]
\[(по\ правилу\ треугольника):\]
\[\overrightarrow{\text{OB}} - \overrightarrow{\text{OC}} = \overrightarrow{\text{OB}} - \left( \overrightarrow{\text{OB}} + \overrightarrow{\text{BC}} \right) =\]
\[= - \overrightarrow{\text{BC}} = \overrightarrow{\text{CB}}.\]
\[\overrightarrow{\text{CB}} = \overrightarrow{\text{DA}}\ \]
\[(так\ как\ AB \parallel CD\ \ и\ \ AB = CD):\]
\[\overrightarrow{\text{OB}} - \overrightarrow{\text{OC}} = \overrightarrow{\text{DA}}.\]
\[Что\ и\ требовалось\ доказать.\]