\[\boxed{\mathbf{396.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ABCD - осевое\ сечение;\]
\[OA = r;\]
\[P - середина\ радиуса\ OA;\]
\[MNKL\bot OA.\]
\[Найти:\]
\[S_{\text{MNKL}}.\]
\[Решение.\]
\[Сечение\ ABCD;\]
\[сечение\ MNKL -\]
\[прямоугольники.\]
\[LM = l - образующая\ \]
\[цилиндра:\]
\[S = S_{\text{ABCD}} = AD \cdot LM = 2rl.\]
\[ON = OM = r;\]
\[OP = \frac{r}{2}.\]
\[По\ теореме\ Пифагора\ \]
\[(из\ ⊿ONP):\]
\[PN = \sqrt{r^{2} - \left( \frac{r}{2} \right)^{2}} = \sqrt{r^{2} - \frac{r^{2}}{2}} =\]
\[= \frac{r\sqrt{3}}{2}.\]
\[⊿OPN = ⊿OPM:\]
\[NP = PM;\]
\[NM = 2PN = 2 \cdot \frac{r\sqrt{3}}{2} = r\sqrt{3}.\]
\[S_{\text{MNKL}} = MN \cdot LM = r\sqrt{3}l =\]
\[= rl\sqrt{3}.\]
\[S = 2rl;\ \ rl = \frac{S}{2}:\]
\[S_{\text{MNKL}} = \frac{S}{2}\sqrt{3}.\]
\[Ответ:\frac{S}{2}\sqrt{3}.\]
\[Параграф\ 4.\ Объем\ шара\ и\ площадь\ сферы\]