\[\boxed{\mathbf{369.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[конус;\]
\[S_{бок} = 80\ см^{2};\]
\[SO = OM;\]
\[CD\bot SM.\]
\[Найти:\ \]
\[S_{бок}.\]
\[Решение.\ \]
\[1)\ S_{бок} = \pi(r + R)l;\ \ r = OC;\ \ \]
\[R = MA;\ \ l = CA.\]
\[2)\ В\ треугольнике\ ASM:\]
\[CO - средняя\ линия.\]
\[3)\ AC = CS;\ CA = CS = l;\ \ \]
\[S_{бок} = \pi R \cdot AC:\]
\[\pi R \cdot 2l = 80\]
\[R\pi l = 40\]
\[l = \frac{40}{\text{πR}}.\]
\[4)\ ⊿SOC\ подобен\ ⊿SMA:\]
\[\frac{\text{SO}}{\text{SM}} = \frac{\text{OC}}{\text{MA}} = \frac{\text{SC}}{\text{SA}};\]
\[\frac{r}{R} = \frac{l}{2l} = \frac{1}{2}\]
\[R = 2r;\ \ \ \ r = \frac{R}{2}.\]
\[5)\ S_{бок} = \pi\left( \frac{R}{2} + R \right) \cdot \frac{40}{\text{πR}} =\]
\[= \frac{3R\pi \cdot 40}{2\pi R} = 60\ см^{2}.\]
\[Ответ:60\ см^{2}.\]