\[\boxed{\mathbf{844.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\ \ \]
\[\mathrm{\Delta}ABC;\ \ \ \]
\[вписанная\ окружность\ (O,r)\]
\[касается\ \mathrm{\Delta}ABC\ в\ точках\]
\[M \in AC,N \in BC,L \in AB;\ \ \]
\[описанная\ окружность\ \]
\[радиуса\ \text{R.}\]
\[Доказать:\ \]
\[\frac{S_{\text{LMN}}}{S_{\text{ABC}}} = \frac{r}{2R}.\]
\[Доказательство.\]
\[1)\ OL = OM = ON = r;\ \ \]
\[\angle LOM = 180{^\circ} - \angle A:\]
\[\sin{\angle LOM} = \sin{\angle A};\]
\[\frac{S_{\text{LOM}}}{S_{\text{ABC}}} = \frac{\frac{1}{2} \bullet r \bullet r \bullet \sin{\angle LOM}}{\frac{1}{2} \bullet AB \bullet AC \bullet \sin{\angle A}} =\]
\[= \frac{r^{2}}{AB \bullet AC}.\]
\[Аналогично:\ \]
\[\frac{S_{\text{MON}}}{S_{\text{ABC}}} = \frac{r^{2}}{CA \bullet CB};\text{\ \ }\]
\[\frac{S_{\text{NOL}}}{S_{\text{ABC}}} = \frac{r^{2}}{BA \bullet BC}.\]
\[2)\ S_{\text{LMN}} = S_{\text{LOM}} + S_{\text{MON}} + S_{\text{NOL}} =\]
\[= \frac{r^{2}(AB + BC + CA)}{AB \bullet BC \bullet CA} \bullet S_{\text{ABC}}.\]
\[3)\ S_{\text{ABC}} = pr =\]
\[= \frac{AB + BC + CA}{2} \bullet r\ :\]
\[4)\ S_{\text{ABC}} = \frac{AB \bullet BC \bullet AC}{4R}:\]
\[\frac{S_{\text{LMN}}}{S_{\text{ABC}}} =\]
\[= \frac{2r}{AB \bullet BC \bullet CA} \bullet \frac{AB \bullet BC \bullet AC}{4R} =\]
\[= \frac{r}{2R}.\]
\[Что\ и\ требовалось\ доказать.\]