\[\boxed{\mathbf{787.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\mathrm{\Delta}ABC - правильный;\]
\[AS\bot ABC;\]
\[AS = AB = a.\]
\[Найти:\]
\[p(AB,SC);\]
\[\angle(AB,SC).\]
\[Решение.\]
\[1)\ Достроим\ \mathrm{\Delta}\text{ABC\ }до\ \]
\[параллелограмма\ ABCD:\ \]
\[DC \parallel AB;\ \]
\[\angle SCD - угол\ между\ \text{AB\ }и\ \text{SC.}\]
\[2)\ Построим\ AH\bot SCD:\ \]
\[p(AB,SCD) = AH.\]
\[3)\ AB \parallel DC\ \ и\ \ DC \in SCD:\]
\[CD \parallel AB.\]
\[4)\ AS = AB = BC = AD = a:\ \]
\[SB = SC = SD = a\sqrt{2}.\]
\[5)\ Построим\ SM\bot DC:\]
\[DM = MC = \frac{a}{2}.\]
\[Отсюда:\]
\[\cos\text{SCA} = \frac{\text{MC}}{\text{SC}} = \frac{a}{2}\ :a\sqrt{2} = \frac{\sqrt{2}}{4};\ \]
\[\angle(AB,SC) = \angle SCA = \arccos\frac{\sqrt{2}}{4}.\]
\[6)\ SM = \sqrt{SC^{2} - CM^{2}} =\]
\[= \sqrt{2a^{2} - \frac{a^{2}}{4}} = \frac{a\sqrt{7}}{2};\]
\[S_{\text{CSD}} = \frac{a}{2} \bullet \frac{a\sqrt{7}}{2} = \frac{a^{2}\sqrt{7}}{4};\ \]
\[S_{\text{ACD}} = \frac{a^{2}}{2} \bullet \sin{60{^\circ}} = \frac{a^{2}\sqrt{3}}{4}.\]
\[7)\ AH - высота\ тетраэдра\ \]
\[ASCD;\]
\[AS - высота\ ASCD:\]
\[V_{\text{ASCD}} = \frac{1}{3}S_{\text{CSD}} \bullet AH = \frac{1}{3} \bullet S_{\text{ACD}} \bullet a\]
\[\frac{a^{2}\sqrt{7}}{4}AH = \frac{a^{2}\sqrt{3}}{4}a\]
\[p(AB,SC) = AH = \sqrt{\frac{3}{7}} \bullet a.\]
\[\mathbf{Ответ}\mathbf{:\ \ }\angle(AB,SC) = \arccos\frac{\sqrt{2}}{4};\ \ \]
\[p(AB,SC) = \sqrt{\frac{3}{7}} \bullet a.\]