\[\boxed{\mathbf{768.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[MABC - пирамида;\]
\[\mathrm{\Delta}ABC - основание;\]
\[AC = 4\ см;\]
\[BC = 3\ см;\]
\[MAC\bot ABC;\]
\[MH - высота;\]
\[p(MH,MBC) = \frac{3\sqrt{2}}{4}.\]
\[Найти:\]
\[S_{бок}.\]
\[Решение.\]
\[1)\ AMC\bot ACB:\]
\[MH\bot ABC\ и\ MH \in MAC.\]
\[Отсюда:\ \]
\[2)\ Из\ точки\ H\ построим\ \]
\[HP\bot AB:\]
\[3)\ \mathrm{\Delta}MHC = \mathrm{\Delta}PMH:\]
\[MH - общая\ сторона;\]
\[углы\ при\ основании\ равны.\]
\[4)\ \mathrm{\Delta}CMB = \mathrm{\Delta}PMB:\]
\[BM - общая\ сторона;\]
\[углы\ при\ основании\ равны.\]
\[5)\ BH - высота\ и\ биссектрисса\ \]
\[в\ \mathrm{\Delta}ABC:\]
\[\frac{\text{AH}}{\text{AB}} = \frac{\text{CH}}{\text{CB}}\]
\[CH = \frac{3}{2}\ см;\]
\[AH = \frac{5}{2}\ см.\]
\[6)\ Объем\ пирамиды\ MHBC:\ \]
\[V_{\text{MHBC}} = \frac{1}{3} \bullet CH \bullet 3\sqrt{2} \bullet 4 \bullet CM =\]
\[= \frac{1}{3} \bullet \frac{3}{2} \bullet 3\sqrt{2} \bullet 4MC = 6\sqrt{2}\text{MC.}\]
\[V_{\text{MHBC}} = \frac{1}{3}MH \bullet S_{\text{CBH}} =\]
\[= \frac{9}{4} \bullet \frac{1}{3} \bullet MH = \frac{3}{4}\text{MH.}\]
\[7)\ \ MC^{2} = CH^{2} + MH^{2} =\]
\[= \left( \frac{3}{2} \right)^{2} + MH^{2};\]
\[\ 6\sqrt{2}MC = \frac{3}{4}\text{MH.}\]
\[Отсюда:\]
\[MH = \frac{3}{2}\ см;\ \ \]
\[MC = \frac{3\sqrt{2}}{2}\ см.\]
\[8)\ S_{\text{MCB}} = \frac{9\sqrt{2}}{4}\ см^{2};\ \]
\[S_{\text{AMB}} = \frac{15\sqrt{2}}{4}\ см^{2};\]
\[S_{\text{AMC}} = \frac{3}{2} \bullet 4 \bullet \frac{1}{2} = 3\ см^{2}.\]
\[9)\ S_{бок} = \frac{9\sqrt{2}}{4} + \frac{15\sqrt{2}}{4} + 3 =\]
\[= 6\sqrt{2} + 3 = 3\left( 2\sqrt{2} + 1 \right)\ см^{2}.\]
\[\mathbf{Отв}ет:\ \ 3\left( 2\sqrt{2} + 1 \right)\ см^{2}.\]