\[\boxed{\mathbf{757.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[OA;OB;OC;OM - лучи;\]
\[\angle AOB = \angle BOC = \angle COA = 90{^\circ};\]
\[\angle AOM = \alpha_{1};\]
\[\angle BOM = \alpha_{2};\ \]
\[\angle COM = \alpha_{3}.\]
\[Доказать:\]
\[\text{co}s^{2}\alpha_{1} + cos^{2}\alpha_{2} + cos^{2}a_{3} = 1.\]
\[Доказательство.\]
\[\left| \overrightarrow{a} \right| = \sqrt{x^{2} + y^{2} + z^{2}};\ \ x;y;z -\]
\[координаты\ вектора\ \overrightarrow{a}.\]
\[Отсюда:\]
\[\left| \overrightarrow{a} \right|^{2} = x^{2} + y^{2} + z^{2} =\]
\[= \left| \overrightarrow{a} \right|^{2}\left( \text{co}s^{2}\alpha_{1} + cos^{2}\alpha_{2} + cos^{2}a_{3} \right)\]
\[\text{co}s^{2}\alpha_{1} + cos^{2}\alpha_{2} + cos^{2}a_{3} = 1.\]
\[Что\ и\ требовалось\ доказать.\]