Решебник по геометрии 10 класс Атанасян ФГОС 748

Авторы:
Год:2023
Тип:учебник

748

\[\boxed{\mathbf{748.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]

\[Дано:\]

\[Доказательство.\]

\[1)\ E_{2}E_{3} - средняя\ линия\ грани\ \]

\[ABD:\]

\[E_{2}E_{3} = \frac{\text{DB}}{2}.\]

\[E_{1}E_{4} - средняя\ линия\ грани\ \]

\[BCD:\]

\[E_{1}E_{4} = \frac{\text{DB}}{2}.\]

\[2)\ \overrightarrow{E_{4}O} = \overrightarrow{E_{4}E_{1}} + \overrightarrow{E_{1}O} =\]

\[= \frac{1}{2}\overrightarrow{\text{DB}} + \overrightarrow{E_{1}O};\]

\[\overrightarrow{OE_{1}} = \overrightarrow{OE_{2}} + \overrightarrow{E_{2}E_{3}} =\]

\[= \overrightarrow{OE_{2}} + \frac{1}{2}\overrightarrow{\text{DB}}.\]

\[По\ условию\ \overrightarrow{OE_{2}} = \overrightarrow{E_{1}O}:\]

\[\overrightarrow{E_{4}O} = \overrightarrow{OE_{3}};\]

\[O - середина\ отрезка\ E_{3}E_{4}.\]

\[3)\ \overrightarrow{\text{DO}} = \overrightarrow{DE_{2}} + \overrightarrow{E_{2}O} =\]

\[= \frac{1}{2}\overrightarrow{\text{DA}} + \frac{1}{2}\overrightarrow{E_{2}E_{1}}\]

\[\overrightarrow{E_{2}E_{1}} = \overrightarrow{E_{2}D} + \overrightarrow{\text{DC}} + \overrightarrow{CE_{1}};\]

\[\overrightarrow{E_{2}E_{1}} = \overrightarrow{E_{2}A} + \overrightarrow{\text{AB}} + \overrightarrow{BE_{1}}.\]

\[Складываем\ два\ последних\ \]

\[равенства,\ учитывая,\ что\ \]

\[\overrightarrow{E_{2}D} + \overrightarrow{E_{2}A} = 0;\]

\[\overrightarrow{E_{1}C} + \overrightarrow{E_{1}B} = 0:\]

\[2\overrightarrow{E_{2}E_{1}} =\]

\[= \overrightarrow{\text{DC}} + \overrightarrow{\text{AB}}\]

\[\overrightarrow{E_{2}E_{1}} = \frac{1}{2}\left( \overrightarrow{\text{DC}} + \overrightarrow{\text{AB}} \right).\]

\[4)\ \overrightarrow{\text{DO}} = \frac{\overrightarrow{\text{DA}}}{2} + \frac{\overrightarrow{E_{2}E_{1}}}{2} =\]

\[= \frac{\overrightarrow{\text{DA}}}{2} + \frac{\overrightarrow{\text{DC}} + \overrightarrow{\text{AB}}}{4} =\]

\[= \frac{\overrightarrow{\text{DA}}}{2} + \frac{\overrightarrow{\text{DC}}}{4} + \frac{\overrightarrow{\text{AB}}}{4} =\]

\[= \frac{\overrightarrow{\text{DA}}}{2} + \frac{\overrightarrow{\text{DC}}}{4} + \frac{\overrightarrow{\text{DB}} - \overrightarrow{\text{DA}}}{4} =\]

\[= \frac{\overrightarrow{\text{DA}} + \overrightarrow{\text{DB}} + \overrightarrow{\text{DC}}}{4};\]

\[\overrightarrow{\text{DM}} = \overrightarrow{\text{DA}} + \overrightarrow{\text{AM}} = \overrightarrow{\text{DA}} + \frac{2}{3}\overrightarrow{AE_{1}} =\]

\[= \overrightarrow{\text{DA}} + \frac{1}{3}\left( \overrightarrow{\text{AB}} + \overrightarrow{\text{AC}} \right) =\]

\[= \overrightarrow{\text{DA}} + \frac{1}{3}\left( \overrightarrow{\text{DB}} + \overrightarrow{\text{DC}} - 2\overrightarrow{\text{DA}} \right) =\]

\[= \frac{1}{3}\overrightarrow{\text{DB}} + \frac{1}{3}\overrightarrow{\text{DC}} + \frac{1}{3}\overrightarrow{\text{DA}} =\]

\[= \frac{1}{3}\left( \overrightarrow{\text{DB}} + \overrightarrow{\text{DC}} + \overrightarrow{\text{DA}} \right).\]

\[Отсюда:\ \]

\[\overrightarrow{\text{DO}} = \frac{3}{4}\overrightarrow{\text{DM}};\]

\[\overrightarrow{\text{OM}} = \frac{1}{4}\overrightarrow{\text{DM}};\]

\[\frac{\overrightarrow{\text{DO}}}{\overrightarrow{\text{OM}}} = 3.\]

\[Следовательно:\]

\[точка\ O\ делит\ \text{DM\ }в\ отношении\ \]

\[3\ :1,\ считая\ от\ вершины.\]

\[Для\ других\ медиан\ \]

\[доказательство\ аналогичное.\]

\[Что\ и\ требовалось\ доказать.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам