\[\boxed{\mathbf{739.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[\overrightarrow{a}\left\{ 2;1; - 2 \right\};\ \ \overrightarrow{b}\left\{ 1;3;0 \right\}.\]
\[1)\ \overrightarrow{e}\left\{ x;y;z \right\} - сонаправлен\ с\ \]
\[вектором\ \overrightarrow{a}:\]
\[\frac{x}{2} = y = - \frac{z}{2};\]
\[y = \frac{x}{2};\ \ z = - x.\]
\[\left| \overrightarrow{e} \right| = 1:\]
\[\sqrt{x^{2} + y^{2} + z^{2}} = 1\]
\[\sqrt{x^{2} + \frac{x^{2}}{4} + x^{2}} = 1\]
\[\sqrt{2,25x^{2}} = 1\]
\[1,5|x| = 1\]
\[x = \pm \frac{2}{3}.\]
\[\text{x\ }имеет\ положительное\ \]
\[значение,\ так\ как\ \overrightarrow{e}\ и\ \overrightarrow{a}\ \]
\[сонаправлены:\]
\[x = \frac{2}{3};\]
\[\overrightarrow{e}\left\{ \frac{2}{3};\frac{1}{3}; - \frac{2}{3} \right\}.\]
\[\textbf{б)}\ Единичный\ вектор\ \]
\[сонаправлен\ с\ вектором\ \overrightarrow{b}.\]
\[x = \frac{y}{3} \rightarrow y = 3x.\]
\[\left| \overrightarrow{e} \right| = 1\]
\[\sqrt{x^{2} + y^{2}} = 1\]
\[x = \frac{1}{\sqrt{10}};\ \ y = \frac{3}{\sqrt{10}};\]
\[\overrightarrow{e}\left\{ \frac{1}{\sqrt{10}};\ \frac{3}{\sqrt{10}};\ \ 0 \right\}.\]