\[\boxed{\mathbf{713.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[MQ = a.\]
\[Доказать:\]
\[\textbf{а)}\ PM_{1}\bot MN_{1}Q_{1};\]
\[\textbf{б)}\ PM_{1}\bot QNP_{1}.\]
\[Доказательство.\]
\[Q(0;0;0);Q_{1}(0;0;a);N(a;a;0);\]
\[N_{1}(a;a;a);\]
\[M(a;0;0);M_{1}(a;0;a);P(0;a;0);\]
\[P_{1}(0;a;a).\]
\[\textbf{а)}\ 1)\ \overrightarrow{PM_{1}}\left\{ a; - a;a \right\};\]
\[\cos{\angle\left( \overrightarrow{PM_{1}};\overrightarrow{MQ_{1}} \right)} =\]
\[= \frac{\left| - a^{2} + a^{2} \right|}{\sqrt{a^{2} + a^{2} + a^{2}} \cdot \sqrt{a^{2} + a^{2}}} = 0:\]
\[угол\ между\ прямыми\ равен\ \]
\[90{^\circ};\]
\[PM_{1}\bot MQ_{1}.\]
\[2)\ \overrightarrow{MN_{1}}\left\{ 0;a;a \right\};\]
\[\cos{\angle\left( \overrightarrow{PM_{1}};\overrightarrow{MN_{1}} \right)} =\]
\[= \frac{\left| - a^{2} + a^{2} \right|}{\sqrt{a^{2} + a^{2} + a^{2}} \cdot \sqrt{a^{2} + a^{2}}} = 0:\]
\[угол\ между\ прямыми\ равен\ \]
\[90{^\circ};\]
\[PM_{1}\bot NM_{1}.\]
\[Отсюда:\]
\[PM_{1}\bot MN_{1} - лежит\ в\ \]
\[плоскости\ MN_{1}Q_{1};\]
\[MQ_{1} - лежит\ в\ плоскости\ \]
\[MN_{1}Q_{1};\]
\[прямые\ пересекаются\ в\ точке\ \]
\[M;\]
\[PM_{1}\bot\left( MN_{1}Q_{1} \right).\]
\[\textbf{б)}\ 1)\ \overrightarrow{\text{QN}}\left\{ a;a;0 \right\};\ \ \overrightarrow{QP_{1}}\left\{ 0;a;a \right\};\ \ \]
\[\overrightarrow{PM_{1}}\left\{ a; - a;a \right\}:\]
\[\cos{\angle\left( \overrightarrow{PM_{1}};\overrightarrow{\text{QN}} \right)} =\]
\[= \frac{\left| a^{2} - a^{2} \right|}{\sqrt{a^{2} + a^{2} + a^{2}} \cdot \sqrt{a^{2} + a^{2}}} = 0;\]
\[угол\ между\ прямыми\ равен\ \]
\[90{^\circ}.\]
\[2)\cos{\angle\left( \overrightarrow{PM_{1}};\overrightarrow{QP_{1}} \right)} =\]
\[= \frac{\left| - a^{2} + a^{2} \right|}{\sqrt{a^{2} + a^{2} + a^{2}} \cdot \sqrt{a^{2} + a^{2}}} = 0;\]
\[угол\ между\ прямыми\ равен\ 90{^\circ}.\]
\[Аналогично,\ PM_{1}\bot\left( \text{QN}P_{1} \right).\]
\[Что\ и\ требовалось\ доказать.\]