\[\boxed{\mathbf{698.}еуроки - ответы\ на\ пятёрку}\]
\[\left| \overrightarrow{a} \right| = 1;\ \ \left| \overrightarrow{b} \right| = \left| \overrightarrow{c} \right| = 2;\]
\[\angle\left( \overrightarrow{a}\overrightarrow{c} \right) = \angle\left( \overrightarrow{b}\overrightarrow{c} \right) = 60{^\circ}.\]
\[\left( \overrightarrow{a} + \overrightarrow{b} \right) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c}:\]
\[\overrightarrow{a}\overrightarrow{c} = \left| \overrightarrow{a} \right| \cdot \left| \overrightarrow{c} \right| \cdot \cos{\angle\left( \overrightarrow{a}\overrightarrow{c} \right)} =\]
\[= 1 \cdot 2 \cdot \cos{60{^\circ}\ } = 2 \cdot \frac{1}{2} = 1;\]
\[\overrightarrow{b}\overrightarrow{c} = \left| \overrightarrow{b} \right| \cdot \left| \overrightarrow{c} \right| \cdot \cos{\angle\left( \overrightarrow{b}\overrightarrow{c} \right)} =\]
\[= 2 \cdot 2 \cdot \cos{60{^\circ}} = 4 \cdot \frac{1}{2} = 2;\]
\[\left( \overrightarrow{a} + \overrightarrow{b} \right) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{c} + \overrightarrow{b} \cdot \overrightarrow{c} =\]
\[= 1 + 2 = 3.\]
\[Ответ:3.\]