Решебник по геометрии 10 класс Атанасян ФГОС 674

Авторы:
Год:2023
Тип:учебник

674

\[\boxed{\mathbf{674.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]

\[A( - 2;3;5);\ \ B(3;2; - 3).\]

\[\textbf{а)}\ K(x;0;0) - точка\ по\ оси\ \text{Ox},\ \]

\[равноудаленная\ от\ точек\ \]

\[\text{A\ }и\ B:\]

\[KA = KB.\]

\[\left| \overrightarrow{\text{KA}} \right| = \sqrt{( - 2 - x)^{2} + 3^{2} + 5^{2}} =\]

\[= \sqrt{4 + 4x + x^{2} + 9 + 25} =\]

\[= \sqrt{x^{2} + 4x + 38};\]

\[\left| \overrightarrow{\text{KB}} \right| =\]

\[= \sqrt{(3 - x)^{2} + 2^{2} + ( - 3)^{2}} =\]

\[= \sqrt{9 - 6x + x^{2} + 4 + 9} =\]

\[= \sqrt{x^{2} - 6x + 22};\]

\[x^{2} + 4x + 38 = x^{2} - 6x + 22\]

\[10x = - 16\]

\[x = - 1,6.\]

\[K( - 1,6;0;0).\]

\[\textbf{б)}D(0;y;0) - точка\ по\ оси\ \text{Oy},\ \]

\[равноудаленная\ от\ точек\ \text{A\ }и\ B:\]

\[AD = DB.\]

\[\left| \overrightarrow{\text{AD}} \right| =\]

\[= \sqrt{( - 2 - 0)^{2} + (3 - y)^{2} + 5^{2}} =\]

\[= \sqrt{4 + 9 - 6y + y^{2} + 25} =\]

\[= \sqrt{y^{2} - 6y + 38};\ \]

\[\left| \overrightarrow{\text{DB}} \right| =\]

\[= \sqrt{3^{2} + (2 - y)^{2} + ( - 3)^{2}} =\]

\[= \sqrt{9 + 4 - 4y + y^{2} + 9} =\]

\[= \sqrt{y^{2} - 4y + 22};\]

\[y^{2} - 6y + 38 = y^{2} - 4y + 22\]

\[- 2y = - 16\]

\[y = 8.\]

\[D(0;8;0).\]

\[\textbf{в)}\ C(0;0;z) - точка\ по\ оси\ \text{Oz},\ \]

\[равноудаленная\ от\ точек\ \text{A\ }и\ B:\]

\[AC = CB.\]

\[\left| \overrightarrow{\text{AC}} \right| =\]

\[= \sqrt{( - 2)^{2} + 3^{2} + (5 - z)^{2}} =\]

\[= \sqrt{13 + 25 - 10z + z^{2}} =\]

\[= \sqrt{z^{2} - 10z + 38};\]

\[\left| \overrightarrow{\text{CB}} \right| = \sqrt{3^{2} + 2^{2} + ( - 3 - z)^{2}} =\]

\[= \sqrt{13 + 9 + 6z + z^{2}} =\]

\[= \sqrt{z^{2} + 6z + 22};\]

\[z^{2} - 10z + 38 = z^{2} + 6z + 22\]

\[- 16z = - 16\]

\[z = 1.\]

\[C(0;0;1).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам