\[\boxed{\mathbf{67.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[\textbf{а)}\ В\ треугольнике\ ABD:\]
\[AB^{2} =\]
\[= AD^{2} + BD^{2} - 2AD \cdot BD \cdot \cos{\angle ADB}\]
\[AB^{2} =\]
\[= 400 + 324 - 2 \cdot 20 \cdot 18 \cdot \cos{54{^\circ}} =\]
\[= 724 - 720 \cdot 0,5878 \approx 301\]
\[AB = \sqrt{301} \approx 17\ см.\]
\[В\ треугольнике\ ACD:\]
\[AC^{2} = AD^{2} + CD^{2}\]
\[AC = \sqrt{400 + 441} = 29\ см.\]
\[По\ теореме\ косинусов:\]
\[CB^{2} =\]
\[= CD^{2} + DB^{2} - 2DC \cdot DB \cdot \cos{\angle BDC}\]
\[CB^{2} =\]
\[= 441 + 324 - 2 \cdot 21 \cdot 18 \cdot \cos{72{^\circ}} =\]
\[= 765 - 233,603 \approx 531\]
\[\text{CB} \approx 23\ см.\]
\[\textbf{б)}\ S_{\text{ADC}} = \frac{1}{2}AD \cdot DC =\]
\[= \frac{1}{2} \cdot 20 \cdot 21 = 210\ см^{2}.\]
\[S_{\text{ADB}} = \frac{1}{2}AD \cdot DB \cdot \sin{54{^\circ}} =\]
\[= \frac{1}{2} \cdot 20 \cdot 18 \cdot 0,809 \approx 146\ см^{2}.\]
\[S_{\text{DBC}} = \frac{1}{2}DC \cdot DB \cdot \sin{72{^\circ}} =\]
\[= \frac{1}{2} \cdot 21 \cdot 18 \cdot 0,9511 \approx 180\ см^{2}.\]