\[\boxed{\mathbf{623.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\ \ \]
\[ABCD - параллелограмм;\ \]
\[AC \cap BD = O;\]
\[M - произвольная\ точка\ \ \]
\[пространства.\]
\[Доказать:\ \ \]
\[MO < \frac{1}{4}(MA + MB + MC + MD).\]
\[Доказательство.\]
\[1)\ \ ABCD - параллелограмм:\ \]
\[BO = OC;\ \]
\[CO = OA.\]
\[Отсюда:\]
\[\overrightarrow{\text{BO}} = - \overrightarrow{\text{DO}};\ \ \]
\[\overrightarrow{\text{AO}} = - \overrightarrow{\text{CO}}.\]
\[2)\ \overrightarrow{\text{MO}} = \overrightarrow{\text{MC}} + \overrightarrow{\text{CO}} = \overrightarrow{\text{MA}} + \overrightarrow{\text{AO}} =\]
\[= \overrightarrow{\text{MB}} + \overrightarrow{\text{BO}} = \overrightarrow{\text{MD}} + \overrightarrow{\text{DO}}:\]
\[4\overrightarrow{\text{MO}} = \overrightarrow{\text{MA}} + \overrightarrow{\text{MB}} + \overrightarrow{\text{MC}} + \overrightarrow{\text{MD}}\ \]
\[\overrightarrow{\text{MO}} = \frac{1}{4}\left( \overrightarrow{\text{MA}} + \overrightarrow{\text{MB}} + \overrightarrow{\text{MC}} + \overrightarrow{\text{MD}} \right).\]
\[3)\ Векторы\ \frac{1}{4}\overrightarrow{\text{MA}};\ \frac{1}{4}\overrightarrow{\text{MB}};\ \frac{1}{4}\overrightarrow{\text{MC}};\ \]
\[\frac{1}{4}\overrightarrow{\text{MD}}\ попарно\ не\ \]
\[сонаправлены:по\ доказанному\ \]
\[в\ задаче\ 587\]
\[Что\ и\ требовалось\ доказать.\ \]