\[\boxed{\mathbf{618.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\ \]
\[\ \mathrm{\Delta}ABC;\ \ \mathrm{\Delta}A_{1}B_{1}C_{1};\ \ \]
\[\text{O\ }и\ P - точки\ пространства;\]
\[\overrightarrow{\text{OA}} + \overrightarrow{\text{OP}} = \overrightarrow{OA_{1}};\ \ \]
\[\overrightarrow{\text{OB}} + \overrightarrow{\text{OP}} = \overrightarrow{OB_{1}};\ \ \]
\[\overrightarrow{\text{OC}} + \overrightarrow{\text{OP}} = \overrightarrow{OC_{1}}.\]
\[Доказать:\ \ \]
\[стороны\ \mathrm{\Delta}A_{1}B_{1}C_{1}\ \]
\[соответственно\ равны\ и\ \]
\[параллельны\ сторонам\ \mathrm{\Delta}ABC.\]
\[Доказательство.\ \]
\[1)\ \overrightarrow{\text{OA}} + \overrightarrow{\text{OP}} = \overrightarrow{OA_{1}}:\]
\[\overrightarrow{\text{OP}} = \overrightarrow{OA_{1}} - \overrightarrow{\text{OA}} = \overrightarrow{OA_{1}} + \overrightarrow{\text{AO}} =\]
\[= \overrightarrow{AA_{1}}.\]
\[2)\ \overrightarrow{\text{OB}} + \overrightarrow{\text{OP}} = \overrightarrow{OB_{1}}:\ \]
\[\overrightarrow{\text{OP}} = \overrightarrow{OB_{1}} - \overrightarrow{\text{OB}} = \overrightarrow{OB_{1}} + \overrightarrow{\text{BO}} =\]
\[= \overrightarrow{BB_{1}}.\]
\[3)\ \overrightarrow{\text{OC}} + \overrightarrow{\text{OP}} = \overrightarrow{OC_{1}}:\ \]
\[\overrightarrow{\text{OP}} = \overrightarrow{OC_{1}} - \overrightarrow{\text{OC}} = \overrightarrow{OC_{1}} + \overrightarrow{\text{CO}} =\]
\[= \overrightarrow{CC_{1}}.\]
\[4)\ Таким\ образом:\]
\[\overrightarrow{AA_{1}} = \overrightarrow{BB_{1}} = \overrightarrow{CC_{1}} = \overrightarrow{\text{OP}}.\ \]
\[Отсюда:\]
\[AA_{1}CC_{1},\ \ \ CC_{1}BB_{1},\ \ \ BB_{1}AA_{1} -\]
\[параллелограммы;\]
\[\text{ABC}A_{1}B_{1}C_{1} - треугольная\ \]
\[призма.\]
\[Следовательно:\]
\[стороны\ \mathrm{\Delta}A_{1}B_{1}C_{1}\ \]
\[соответственно\ равны\ и\ \]
\[параллельны\ сторонам\ \mathrm{\Delta}ABC.\]
\[Что\ и\ требовалось\ доказать.\ \]