\[\boxed{\mathbf{611.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\ \ \]
\[отрезки\ AB\ и\ \text{CD\ }не\ лежат\ в\ \]
\[одной\ плоскости;\]
\[точки\ \text{M\ }и\ N - середины\ AB\ и\ \]
\[\text{CD.}\]
\[Доказать:\ \ \]
\[MN < \frac{1}{2}(AC + BD).\]
\[Доказательство.\]
\[1)\ Точка\ M - середина\ AB;\ \]
\[\overrightarrow{\text{AM}} = - \overrightarrow{\text{BM}}:\]
\[\overrightarrow{\text{NM}} = \frac{1}{2}\left( \overrightarrow{\text{NA}} + \overrightarrow{\text{NB}} \right).\]
\[2)\ \overrightarrow{\text{NA}} = \overrightarrow{\text{NC}} + \overrightarrow{\text{CA}};\ \ \ \]
\[\overrightarrow{\text{NB}} = \overrightarrow{\text{ND}} + \overrightarrow{\text{DB}}:\]
\[\overrightarrow{\text{NM}} = \frac{1}{2}\left( \overrightarrow{\text{NC}} + \overrightarrow{\text{CA}} + \overrightarrow{\text{ND}} + \overrightarrow{\text{DB}} \right).\]
\[\overrightarrow{\text{NC}} = - \overrightarrow{\text{ND}}:\]
\[\overrightarrow{\text{NM}} = \frac{1}{2}\left( \overrightarrow{\text{CA}} + \overrightarrow{\text{DB}} \right).\]
\[3)\ Векторы\ \overrightarrow{\text{CA}}\ и\ \overrightarrow{\text{DB}} - не\ \]
\[коллинеарны\ (так\ как\ \text{CD\ }и\ \text{AB\ }\]
\[не\ лежат\ в\ одной\ плоскости,\ то\ \]
\[точки\ A,B,C\ и\ D - не\ лежат\ в\ \]
\[одной\ плоскости):\]
\[\overrightarrow{\text{CA}} + \overrightarrow{\text{DB}} < \left| \overrightarrow{\text{CA}} \right| + \left| \overrightarrow{\text{DB}} \right|\ \]
\[4)\ Таким\ образом:\ \]
\[MN < \frac{1}{2}(AC + BD).\]
\[Что\ и\ требовалось\ доказать.\]