\[\boxed{\mathbf{607.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\ \ \]
\[ABCD - правильный\ тетраэдр;\ \ \ \]
\[\text{AM\ }и\ DN - высоты,\ \]
\[пересекаются\ в\ точке\ K.\]
\[Разложить:\ \ \]
\[по\ векторам\ \overrightarrow{a} = \overrightarrow{\text{DA}},\ \overrightarrow{b} = \overrightarrow{\text{DB}},\ \]
\[\overrightarrow{c} = \overrightarrow{\text{DC}}\]
\[\textbf{а)}\ вектор\ \overrightarrow{\text{DN}};\]
\[\textbf{б)}\ вектор\ \overrightarrow{\text{DK}};\]
\[\textbf{в)}\ вектор\ \overrightarrow{\text{AM}};\]
\[\textbf{г)}\ вектор\ \overrightarrow{\text{MK}}.\]
\[Решение.\]
\[Так\ как\ все\ грани\ ABCD -\]
\[правильные\ треугольники:\]
\[AM\ и\ DN - высоты\ и\ медианы.\]
\[Отметим\ точку\ K -\]
\[пересечение\ медиан\ AM\ и\ \text{DN.}\]
\[\textbf{а)}\ Точка\ N - пересечение\ \]
\[медиан\ \mathrm{\Delta}\text{BAC\ }и\ D -\]
\[произвольная\ точка\ \]
\[пространства\ (из\ доказанного\ \]
\[в\ №603):\]
\[\overrightarrow{\text{DN}} = \frac{\overrightarrow{\text{DA}} + \overrightarrow{\text{DB}} + \overrightarrow{\text{DC}}}{3} =\]
\[= \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{3}.\]
\[\textbf{б)}\ \mathrm{\Delta}KMN\sim\mathrm{\Delta}KDA:\]
\[\angle NKM = \angle DKA\ \]
\[(как\ вертикальные);\]
\[AK = KD;\ KN = KM = \frac{1}{3}\text{AK.}\]
\[Отсюда:\]
\[\frac{\text{NM}}{\text{AD}} = \frac{1}{3}.\]
\[\mathrm{\Delta}A_{1}NM = \mathrm{\Delta}A_{1}AD:\]
\[\angle A_{1} - общий;\]
\[A_{1}D = AD;\ \ \ A_{1}N = A_{1}\text{M.}\]
\[Отсюда:\]
\[\frac{\text{NM}}{\text{AD}} = \frac{A_{1}N}{A_{1}A} = \frac{1}{3};\]
\[\frac{\text{KN}}{\text{DK}} = \frac{\text{NM}}{\text{AD}} = \frac{1}{3}.\]
\[Следовательно:\]
\[\overrightarrow{\text{DK}} = \frac{3}{4}\overrightarrow{\text{DN}} = \frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{4}.\]
\[\textbf{в)}\ \overrightarrow{\text{AM}} = \frac{\overrightarrow{\text{AB}} + \overrightarrow{\text{AC}} + \overrightarrow{\text{AD}}}{3} =\]
\[= \frac{\overrightarrow{\text{DB}} - \overrightarrow{\text{DA}} + \overrightarrow{\text{DC}} - \overrightarrow{\text{DA}} - \overrightarrow{\text{DA}}}{3} =\]
\[= \frac{- 3\overrightarrow{\text{DA}} + \overrightarrow{\text{DB}} + \overrightarrow{\text{DC}}}{3} =\]
\[= - \overrightarrow{a} + \frac{\overrightarrow{b} + \overrightarrow{c}}{3}.\]
\[\textbf{г)}\ \overrightarrow{\text{MK}} = \frac{1}{4}\overrightarrow{\text{MA}} = - \frac{1}{4}\overrightarrow{\text{AM}} =\]
\[= \frac{3\overrightarrow{a} - \overrightarrow{b} - \overrightarrow{c}}{12} = \frac{1}{4}\overrightarrow{a} - \frac{\overrightarrow{b}}{12} - \frac{\overrightarrow{c}}{12}.\]