Решебник по геометрии 10 класс Атанасян ФГОС 605

Авторы:
Год:2023
Тип:учебник

605

\[\boxed{\mathbf{605.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]

\[Дано:\]

\[\text{ABCD}A_{1}B_{1}C_{1}D_{1} -\]

\[параллелепипед;\ \ \]

\[AM = MB;\ \ \]

\[A_{1}N = ND_{1}.\]

\[Решение.\]

\[\textbf{а)}\ По\ правилу\ \]

\[параллелограмма:\]

\[\overrightarrow{\text{AC}} = \overrightarrow{\text{AB}} + \overrightarrow{\text{AD}}.\]

\[\textbf{б)}\ \overrightarrow{\text{MB}} + \overrightarrow{\text{BC}} = \overrightarrow{\text{MC}} = - \overrightarrow{\text{MC}};\ \ \text{\ \ }\]

\[\overrightarrow{\text{MB}} = \frac{1}{2}\overrightarrow{\text{AB}};\ \ \ \ \overrightarrow{\text{BC}} = \overrightarrow{\text{AD}}:\]

\[\overrightarrow{\text{CM}} = - \left( \frac{1}{2}\overrightarrow{\text{AB}} + \overrightarrow{\text{AD}} \right) =\]

\[= - \frac{1}{2}\overrightarrow{\text{AB}} - \overrightarrow{\text{AD}}.\]

\[\textbf{в)}\ Отметим\ точку\ E -\]

\[середину\ ребра\ AD:\]

\[\ \overrightarrow{C_{1}N} = \overrightarrow{\text{CE}};\]

\[\overrightarrow{\text{ED}} + \overrightarrow{\text{DC}} = \overrightarrow{\text{EC}} = - \overrightarrow{\text{CE}};\ \ \]

\[\overrightarrow{\text{ED}} = \frac{1}{2}\overrightarrow{\text{AD}};\ \ \ \]

\[\overrightarrow{\text{DC}} = \overrightarrow{\text{AB}}.\]

\[Отсюда:\]

\[\overrightarrow{\text{CE}} = - \left( \frac{1}{2}\overrightarrow{\text{AD}} + \overrightarrow{\text{AB}} \right) =\]

\[= - \frac{1}{2}\overrightarrow{\text{AD}} - \overrightarrow{\text{AB}};\ \]

\[\overrightarrow{C_{1}N} = - \overrightarrow{\text{AB}} - \frac{1}{2}\overrightarrow{\text{AD}}.\]

\[\textbf{г)}\ Векторы\ \overrightarrow{AC_{1}},\ \overrightarrow{\text{AB}}\ и\ \overrightarrow{\text{AD}} - не\ \]

\[компланарны,\ так\ как\ \overrightarrow{AC_{1}}\ не\ \]

\[лежит\ в\ плоскости\ ABD.\]

\[\textbf{д)}\ \overrightarrow{A_{1}N} = \overrightarrow{\text{AE}} = \frac{1}{2}\overrightarrow{\text{AD}} + 0 \bullet \overrightarrow{\text{AB}}\text{.\ }\]

\[\textbf{е)}\ Векторы\ \overrightarrow{\text{AN}},\ \overrightarrow{\text{AB}}\ и\ \overrightarrow{\text{AD}} - не\ \]

\[компланарны,\ так\ как\ \overrightarrow{\text{AN}}\ не\ \]

\[лежит\ в\ плоскости\ ABD.\]

\[\textbf{ж)}\ \overrightarrow{\text{AM}} + \overrightarrow{\text{MD}} = \overrightarrow{\text{AD}};\text{\ \ }\]

\[\overrightarrow{\text{AM}} = \frac{1}{2}\overrightarrow{\text{AB}}:\]

\[\overrightarrow{\text{MD}} + \frac{1}{2}\overrightarrow{\text{AB}} = \overrightarrow{\text{AD}}\ \]

\[\overrightarrow{\text{MD}} = \overrightarrow{\text{AD}} - \frac{1}{2}\overrightarrow{\text{AB}}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам