\[\boxed{\mathbf{582.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[ABCD - параллелограмм;\]
\[AE = EB;\]
\[BF = FC;\ \ \]
\[O - произвольная\ точка\ \]
\[пространства.\]
\[Выразить:\ \ \]
\[\textbf{а)}\ вектор\ \overrightarrow{\text{OA}} - \overrightarrow{\text{OC}}\ через\ \overrightarrow{\text{EF}};\ \ \]
\[\textbf{б)}\ вектор\ \overrightarrow{\text{OA}} - \overrightarrow{\text{OE}}\ через\ \overrightarrow{\text{DC}}.\]
\[Решение.\]
\[\textbf{а)}\ \overrightarrow{\text{OC}} = \overrightarrow{\text{OA}} + \overrightarrow{\text{AC}}:\ \]
\[\overrightarrow{\text{OA}} - \overrightarrow{\text{OC}} = \overrightarrow{\text{OA}} - \overrightarrow{\text{OA}} - \overrightarrow{\text{AC}} =\]
\[= - \overrightarrow{\text{AC}}.\]
\[Точки\ E\ и\ F - середины\ сторон\ \]
\[\text{AB\ }и\ BC:\]
\[EF - средняя\ линия;\]
\[\overrightarrow{\text{EF}} = \frac{1}{2}\overrightarrow{\text{AC}};\ \]
\[- \overrightarrow{\text{AC}} = - 2\overrightarrow{\text{EF}}.\]
\[\textbf{б)}\ \overrightarrow{\text{OA}} = \overrightarrow{\text{OE}} + \overrightarrow{\text{EA}}:\]
\[\overrightarrow{\text{OA}} - \overrightarrow{\text{OE}} = \overrightarrow{\text{OE}} - \overrightarrow{\text{EA}} - \overrightarrow{\text{OE}} =\]
\[= - \overrightarrow{\text{EA}};\]
\[AE = EB\ \]
\[\left( так\ как\ E - середина\ \text{AB} \right);\]
\[AB = CD\ \]
\[(по\ свойству\ параллелограмма).\]
\[Получаем:\]
\[EA = \frac{1}{2}DC;\]
\[- \overrightarrow{\text{EA}} = - \frac{1}{2}\overrightarrow{\text{DC}}.\]
\[Ответ:\ \ а) - 2\overrightarrow{\text{EF}};\ \ б) - \frac{1}{2}\overrightarrow{\text{DC}}\]