\[\boxed{\mathbf{575.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\text{ABCD}A_{1}B_{1}C_{1}D_{1} -\]
\[параллелепипед;\]
\[O - произвольная\ очка.\]
\[Доказать:\]
\[\overrightarrow{\text{OA}} + \overrightarrow{OC_{1}} = \overrightarrow{\text{OC}} + \overrightarrow{OA_{1}}.\]
\[Доказательство.\]
\[1)\ \overrightarrow{\text{OA}} = \overrightarrow{OA_{1}} + \overrightarrow{A_{1}A}:\ \]
\[\overrightarrow{A_{1}A} = \overrightarrow{\text{OA}} - \overrightarrow{OA_{1}}.\]
\[2)\ \overrightarrow{\text{OC}} = \overrightarrow{OC_{1}} + \overrightarrow{C_{1}C}:\ \]
\[\overrightarrow{C_{1}C} = \overrightarrow{\text{OC}} - \overrightarrow{OC_{1}}.\]
\[3)\ A_{1}A \parallel C_{1}C;\text{\ \ }A_{1}A = C_{1}C:\]
\[\overrightarrow{A_{1}A} = \overrightarrow{C_{1}C}.\]
\[4)\ Получаем:\]
\[\overrightarrow{\text{OA}} - \overrightarrow{OA_{1}} = \overrightarrow{\text{OC}} - \overrightarrow{OC_{1}};\]
\[\overrightarrow{\text{OA}} + \overrightarrow{OC_{1}} = \overrightarrow{\text{OC}} + \overrightarrow{OA_{1}}\text{.\ }\]
\[Что\ и\ требовалось\ доказать.\]