\[\boxed{\mathbf{553.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[шар\ O;\]
\[ABCDM - вписанная\ пирамида;\]
\[ABCD - прямоугольник;\]
\[AC = 10\ см;\]
\[\angle MAH = \beta.\]
\[Найти:\]
\[S_{шара};\]
\[V_{шара}.\]
\[Решение.\]
\[1)\ MH - высота\ пирамиды\text{.\ }\]
\[2)\ \angle MAH = \angle MBH = \angle MCH =\]
\[= \angle MDH = \beta;\]
\[MH - общий\ катет;\]
\[\mathrm{\Delta}MBH = \mathrm{\Delta}MAH = \mathrm{\Delta}MCH =\]
\[= \mathrm{\Delta}MDH.\]
\[Отсюда:\]
\[BH = AH = DH = CH = r -\]
\[радиус\ описанной\ около\ \]
\[ABCD - окружности.\]
\[3)\ По\ теореме\ синусов\ в\ \mathrm{\Delta}MAC:\]
\[\frac{\text{AC}}{\sin{\angle AMC}} = \frac{\text{AC}}{\sin(180{^\circ} - 2\beta)} =\]
\[= 2R_{шара}\]
\[R_{шара} = \frac{10}{2\sin{2\beta}} = \frac{5}{\sin{2\beta}}.\]
\[4)\ Площадь\ шара:\]
\[S_{шара} = 4\pi R^{2} = \frac{4\pi \bullet 25}{\sin^{2}{2\beta}} =\]
\[= \frac{100\pi}{\sin^{2}{2\beta}}\ см^{2}.\]
\[5)\ V_{шара} = \frac{4}{3}\pi R^{3} = \frac{4 \bullet 125\pi}{3 \bullet \sin^{3}{2\beta}} =\]
\[= \frac{500\pi}{3\sin^{3}{2\beta}\ }\ см^{3}.\]
\[\mathbf{Отв}ет:\ \ S_{шара} = \frac{100\pi}{\sin^{2}{2\beta}}\ см^{2};\ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }V_{шара} = \frac{500\pi}{3\sin^{3}{2\beta}\ }\ см^{3}.\]