\[\boxed{\mathbf{545.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[конус;\]
\[R_{осн} = r;\]
\[l - образующая;\]
\[O - центр\ вписанной\ сферы.\]
\[Найти:\]
\[\text{c.}\]
\[Решение.\]
\[1)\ MB - высота\ конуса;\ \ \]
\[OP = OC = OH = R_{сферы};\]
\[HA = HB = r;\ \ \]
\[MA = MB = l.\]
\[Точки\ D,C,H - касания\ сферы\ \]
\[и\ конуса.\]
\[2)\ \mathrm{\Delta}AHO - прямоугольный:\]
\[\frac{\text{HO}}{\text{AH}} = tg\ \angle OAH\]
\[HO = AH \bullet tg\ \angle OAH;\]
\[R_{сферы} = r \bullet tg\ \angle OAH.\]
\[3)\ AO - биссектриса\ \angle MAB:\]
\[\angle MAB = 2 \bullet \angle OAH.\]
\[4)\ \mathrm{\Delta}MAH - прямоугольный:\]
\[\cos(2 \bullet \angle OAH) = \frac{\text{AH}}{\text{AM}} = \frac{r}{l}\]
\[2\cos^{2}{\angle OAH} - 1 = \frac{r}{l}\]
\[\cos^{2}{\angle OAH} = \frac{r + l}{2l}\]
\[\cos{\angle OAH} = \sqrt{\frac{r + l}{2l}}.\]
\[Отсюда:\]
\[\sin^{2}{\angle OAH} = 1 - \frac{r + l}{2l}\]
\[\sin{\angle OAH} = \sqrt{\frac{l - r}{2l}};\]
\[tg\ \angle OAH = \frac{\sin{\angle OAH}}{\cos{\angle OAH}} =\]
\[= \sqrt{\frac{l - r}{2l} \bullet \frac{2l}{r + l}} = \sqrt{\frac{l - r}{r + l}}.\]
\[5)\ \angle MDO = \angle MAH = 2 \bullet \angle AOH;\]
\[\angle AMH = 90{^\circ} - 2 \bullet \angle AOH;\]
\[\angle ADC = 180{^\circ} - 2 \bullet \angle AOH;\]
\[\angle ADO = 90{^\circ},\ отсюда\ \angle ADC =\]
\[= 180{^\circ} - 2\angle AOH =\]
\[= 90{^\circ} - 2\angle AOH.\]
\[6)\ DK = AO \bullet \cos{\angle ADC} =\]
\[= AO \bullet \cos(90{^\circ} - 2\angle AOH)\]
\[DK = AO \bullet \sin(2\angle AOH) =\]
\[= AO \bullet \sin{\angle AOH} \bullet \cos{\angle AOH}\]
\[DK =\]
\[= r \bullet \sqrt{\frac{l - r}{l + r}} \bullet 2\sqrt{\frac{l - r}{2l}} \bullet \sqrt{\frac{l + r}{2l}} =\]
\[= \frac{2r(l - r)}{2l} = r\frac{l - r}{l}.\]
\[7)\ DK - радиус\ окружности,\ по\ \]
\[которой\ сфера\ касается\ конуса:\ \]
\[c = 2\pi \bullet DK = 2\pi r\frac{l - r}{l}.\]
\[\mathbf{Отв}ет:\ \ 2\pi r\frac{l - r}{l}.\]