\[\boxed{\mathbf{534.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[MABCD - пирамида;\]
\[MH = h;\]
\[\angle AHD = \alpha;\]
\[\angle BHC = \alpha;\]
\[\angle MAC = \beta;\]
\[\angle MCA = \beta;\]
\[\angle MBD = \gamma;\]
\[MDB = \gamma.\]
\[Найти:\]
\[\text{V.}\]
\[Решение.\]
\[1)\ \mathrm{\Delta}MHB - прямоугольный:\ \]
\[\frac{\text{MH}}{\text{HB}} = tg\ \gamma;\ \ \frac{h}{\text{HB}} = tg\ \gamma;\ \]
\[HB = \frac{h}{\text{tg\ γ}}.\]
\[2)\ \mathrm{\Delta}MAH - прямоугольный:\]
\[\frac{\text{MH}}{\text{HA}} = tg\ \beta;\ \ \ \frac{h}{\text{HA}} = tg\ \beta;\]
\[HA = \frac{h}{\text{tg\ β}}.\]
\[3)\ HA = \frac{1}{2}AC \rightarrow AC = \frac{2h}{\text{tg\ β}};\]
\[HB = \frac{1}{2}BD \rightarrow \ BD = \frac{2h}{\text{tg\ γ}}.\]
\[4)\ Площадь\ основания\ \]
\[пирамиды:\]
\[S_{осн} = S_{\text{ABCD}} =\]
\[= \frac{1}{2}AC \bullet BD \bullet \sin\alpha =\]
\[= \frac{1}{2} \bullet \frac{2h}{\text{tg\ β}} \bullet \frac{2h}{\text{tg\ γ}} \bullet \sin a =\]
\[= \frac{2h^{2} \bullet \sin\alpha}{tg\ \beta \bullet tg\ \gamma}.\]
\[5)\ V = \frac{1}{3} \bullet S_{осн} \bullet h =\]
\[= \frac{1}{3} \bullet \frac{2h^{2} \bullet \sin\alpha}{tg\ \beta \bullet tg\ \gamma} \bullet h =\]
\[= \frac{2h^{3} \bullet \sin\alpha}{3 \bullet tg\ \beta \bullet tg\ \gamma}.\]
\[\mathbf{Отв}ет:\ \ V = \frac{2h^{3} \bullet \sin\alpha}{3 \bullet tg\ \beta \bullet tg\ \gamma}.\]