\[\boxed{\mathbf{370.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[усеченный\ конус;\]
\[ABCD - трапеция;\]
\[\angle A = 90{^\circ};\]
\[\angle D = 45{^\circ};\]
\[BC = 4\ см;\]
\[CD = 3\sqrt{2}\ см.\]
\[Найти:\]
\[S_{пов}.\]
\[Решение.\]
\[1)\ BC = r;\ \ AD = R;\ \ DC = l;\ \ \]
\[AB = CK = H;\ \ CK\bot AD.\]
\[2)\ В\ треугольнике\ DCK:\]
\[\angle D = 45{^\circ};\ \ \angle C = 45{^\circ};\]
\[DK = CK.\]
\[3)\ По\ теореме\ Пифагора:\]
\[KD^{2} + KC^{2} = CD^{2}\]
\[2KD^{2} = \left( 3\sqrt{2} \right)^{2}\]
\[KD^{2} = \frac{18}{2} = 9\]
\[KD = 3\ см.\]
\[DK = CK = 3\ см.\]
\[4)\ AD = DK + KA = 3 + 4 =\]
\[= 7\ см.\]
\[5)\ S_{бок} = \pi(R + r)l =\]
\[= \pi(4 + 7) \cdot 3\sqrt{2} = 33\sqrt{2}\text{π\ }\left( см^{2} \right).\]
\[S_{пов} = S_{бок} + \pi\left( R^{2} + r^{2} \right) =\]
\[= 33\sqrt{2}\pi + \pi(16 + 49) =\]
\[= 33\sqrt{2}\pi + 65\pi\ \left( см^{2} \right).\]
\[Ответ:\ 33\sqrt{2}\pi + 65\pi\ см².\]