\[\boxed{\mathbf{347.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[l = AS = 12\ см.\]
\[Найти:\]
\[S_{осн}.\]
\[Решение.\]
\[R = OA = AS \cdot \cos\alpha;\]
\[S_{осн} = \pi R^{2}.\]
\[\textbf{а)}\ \alpha = 30{^\circ}:\]
\[R = 12 \cdot \frac{\sqrt{3}}{3} = 6\sqrt{3}\ см.\]
\[S_{осн} = \pi \cdot \left( 6\sqrt{3} \right)^{2} = 108\pi\ \left( см^{2} \right).\]
\[\textbf{б)}\ \alpha = 45{^\circ}:\]
\[R = 12 \cdot \frac{\sqrt{2}}{2} = 6\sqrt{2}\ см.\]
\[S_{осн} = \pi \cdot \left( 6\sqrt{2} \right)^{2} = 72\pi\ \left( см^{2} \right).\]
\[\textbf{в)}\ \alpha = 60{^\circ}:\]
\[R = 12 \cdot \frac{1}{2} = 6\ см.\]
\[S_{осн} = \pi \cdot 6^{2} = 36\pi\ \left( см^{2} \right).\]