\[\boxed{\mathbf{121.}ОК\ ГДЗ\ –\ домашка\ на\ 5}\]
\[Дано:\]
\[\mathrm{\Delta}ABC;\]
\[\angle C = 90{^\circ};\]
\[AC = 6\ см;\]
\[BC = 8\ см;\]
\[CM - медиана;\]
\[CK\bot ABC;\]
\[CK = 12\ см.\]
\[Найти:\]
\[\text{KM.}\]
\[Решение.\]
\[1)\ CM - медиана:\ \]
\[AM = MB.\]
\[Отсюда:\]
\[AM = \frac{1}{2}\text{AB.}\]
\[2)\ Рассмотрим\ \mathrm{\Delta}ABC:\]
\[AB^{2} = 64 + 36 = 100\]
\[AB = 10\ см;\]
\[AM = \frac{1}{2} \bullet 10 = 5\ см;\ \ \]
\[\cos{\angle A} = \frac{\text{AC}}{\text{AB}} = \frac{6}{8} = \frac{3}{5}.\]
\[3)\ По\ теореме\ косинусов:\]
\[CM^{2} =\]
\[= AM^{2} + AC^{2} - 2 \bullet \cos{\angle A} \bullet AM \bullet AC;\]
\[CM = \sqrt{6^{2} + 5^{2} - 2 \bullet \frac{3}{5} \bullet 6 \bullet 5} =\]
\[= \sqrt{36 + 25 - 6 \bullet 6} = \sqrt{25} =\]
\[= 5\ см.\]
\[4)\ Рассмотрим\ \mathrm{\Delta}KMC:\ \]
\[KM = \sqrt{CM^{2} + KC^{2}} =\]
\[= \sqrt{5^{2} + 12^{2}} = \sqrt{25 + 144} =\]
\[= \sqrt{169} = 13\ см.\]
\[Ответ:\ 13\ см.\]