\[\boxed{Вариант\ 4.}\]
\[\boxed{\mathbf{1.}}\]
\[a_{1} = - 4;\ \ a_{n + 1} = a_{n} + 3:\]
\[d = 3.\]
\[a_{5} = a_{1} + 4d = - 4 + 3 \cdot 4 =\]
\[= - 4 + 12 = 8.\]
\[Ответ:1).\]
\[\boxed{\mathbf{2.}}\]
\[a_{5} = 5;\ \ a_{7} = 13:\]
\[a_{5} = a_{1} + 4d \Longrightarrow a_{1} = a_{5} - 4d;\]
\[a_{7} = a_{1} + 6d \Longrightarrow a_{1} = a_{7} - 6d.\]
\[a_{5} - 4d = a_{7} - 6d\]
\[5 - 4d = 13 - 6d\]
\[- 4d + 6d = 13 - 5\]
\[2d = 8\]
\[d = 4.\]
\[a_{1} = a_{5} - 4d = 5 - 4 \cdot 4 = 5 - 16 = - 11.\]
\[Ответ:2).\]
\[\boxed{\mathbf{3.}}\]
\[b_{1} = 1;\ \ b_{6} = 243:\]
\[b_{6} = b_{1}q^{5} \Longrightarrow q^{5} = \frac{b_{6}}{b_{1}}\]
\[q^{5} = \frac{243}{1} = 243\]
\[q = 3.\]
\[S_{5} = \frac{b_{1}\left( q^{5} - 1 \right)}{q - 1} = \frac{1 \cdot (243 - 1)}{3 - 1} =\]
\[= \frac{242}{2} = 121.\]
\[Ответ:2).\]
\[\boxed{\mathbf{4.}}\]
\[a_{1} + a_{2} + a_{3} = 111:\]
\[a_{1} + a_{1} + d + a_{1} + 2d = 111\]
\[3a_{1} + 3d = 111\]
\[a_{1} + d = 111\ :3\]
\[a_{1} + d = 37 \Longrightarrow a_{2} = 37.\]
\[a_{2} = 5a_{1}\]
\[5a_{1} = 37\]
\[a_{1} = 7,4.\]
\[Ответ:7,4.\]
\[\boxed{\mathbf{5.}}\]
\[b_{5} - b_{3} = 72:\]
\[b_{1}q^{4} - b_{1}q^{2} = b_{1}q^{2}\left( q^{2} - 1 \right) =\]
\[= q \cdot b_{1}q\left( q^{2} - 1 \right) = 72.\]
\[b_{4} - b_{2} = 36:\]
\[b_{1}q^{3} - b_{1}q = b_{1}q\left( q^{2} - 1 \right) = 36.\]
\[q \cdot 36 = 72\]
\[q = 2.\]
\[b_{1} \cdot 2 \cdot \left( 2^{2} - 1 \right) = 36\]
\[b_{1} \cdot 3 = 18\]
\[b_{1} = 6.\]
\[Ответ:6;2.\]
\[\boxed{\mathbf{6.}}\]
\[\left\{ \begin{matrix} y \geq (x + 2)^{2}\text{\ \ \ \ } \\ 2x - y + 7 \geq 0 \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} y \geq (x + 2)^{2} \\ y \leq 2x + 7\ \ \\ \end{matrix} \right.\ \]