\[\boxed{\text{923\ (923).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \frac{3x}{7\sqrt{x}} = \frac{3x\sqrt{x}}{7x} = \frac{3}{7} \cdot \sqrt{x};\ \]
\[\textbf{б)}\ \frac{5}{\sqrt{\text{ab}}} = \frac{5\sqrt{\text{ab}}}{\text{ab}};\]
\[\textbf{в)}\ \frac{4}{\sqrt{c} - 1} = \frac{4 \cdot \left( \sqrt{c} + 1 \right)}{\left( \sqrt{c} - 1 \right)\left( \sqrt{c} + 1 \right)} =\]
\[= \frac{4\sqrt{c} + 4}{c - 1};\]
\[\textbf{г)}\ \frac{1}{2\sqrt{x} + 3\sqrt{y}} =\]
\[= \frac{2\sqrt{x} - 3\sqrt{y}}{\left( 2\sqrt{x} + 3\sqrt{y} \right)\left( 2\sqrt{x} - 3\sqrt{y} \right)} =\]
\[= \frac{2\sqrt{x} - 3\sqrt{y}}{4x - 9y}.\]