\[\boxed{\text{840\ (840).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \frac{(n + 1)!}{(n - 1)!} = 42\]
\[\frac{(n - 1)! \cdot n(n + 1)}{(n - 1)!} = 42\]
\[n(n + 1) = 42\]
\[n^{2} + n - 42 = 0,\ \ n > 0\]
\[По\ теореме\ Виета:n_{1} = - 7,\ \ \]
\[n_{2} = 6.\]
\[n_{2} = - 7 \Longrightarrow не\ подходит.\]
\[Ответ:n = 6.\]
\[\textbf{б)}\ \frac{(n + 1)! - n!}{(n + 1)!} = \frac{5}{6}\ \]
\[\frac{n!(n + 1) - n!}{n!(n + 1)} = \frac{5}{6}\]
\[\frac{n!\left( (n + 1) - 1 \right)}{n!(n + 1)} = \frac{5}{6}\]
\[\frac{n}{n + 1} = \frac{5}{6}\]
\[n = 5\]
\[Ответ:n = 5.\]
\[\boxed{\text{840.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[y = (x - a)(x - b) - c^{2},\]
\[(x - a)(x - b) - c^{2} =\]
\[= x^{2} - \text{bx} - \text{ax} + \text{ab} - c^{2} =\]
\[= x^{2} - (a + b) \cdot x + \text{ab} - c^{2} = 0.\]
\[Если\ D \geq 0,\ то\ график\ имеет\ \]
\[хотя\ бы\ одну\ общую\ точку\ \]
\[с\ осью\ x:\]
\[D = (a + b)^{2} - 4 \cdot \left( ab - c^{2} \right) =\]
\[= a^{2} + 2ab + b^{2} - 4ab + 4c^{2} =\]
\[= (a - b)^{2} + 4c^{2} \geq 0 \Longrightarrow верно\ \]
\[при\ любых\ значениях\ a,\ b,\ c.\]