\[\boxed{\text{838\ (838).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \frac{47!}{45!} = \frac{45! \cdot 46 \cdot 47}{45!} = 46 \cdot 47 =\]
\[= 2162;\]
\[\textbf{б)}\ \frac{20!}{15! \cdot 3!} =\]
\[= \frac{15! \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20}{15! \cdot 2 \cdot 3} =\]
\[= 16 \cdot 17 \cdot 3 \cdot 19 \cdot 20 = 310\ 080;\]
\[\textbf{в)}\ \frac{16!}{11! \cdot 5!} =\]
\[= \frac{11! \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16}{11! \cdot 2 \cdot 3 \cdot 4 \cdot 5} =\]
\[= 13 \cdot 14 \cdot 3 \cdot 8 = 4368.\]
\[\boxed{\text{838.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[x^{4} - 4x^{3} - 6x^{2} - 3x + 9 =\]
\[= \left( x^{4} - 2 \cdot 3x^{2} + 9 \right) - 4x^{3} - 3x =\]
\[= \left( x^{2} - 3 \right)^{2} - 4x^{3} - 3x;\]
\[при\ \ x < 0:\]
\[\left( x^{2} - 3 \right)^{2} \geq 0;\]
\[- 4x^{3} > 0;\]
\[- 3x > 0.\]
\[Значит:\ \ \left( x^{2} - 3 \right)^{2} - 4x^{3} - 3x >\]
\[> 0 \Longrightarrow не\ имеет\ \]
\[отрицательных\ корней.\]