\[\boxed{\text{751\ (751).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[1)\ \frac{a - 3}{a^{2} - 3a + 9} - \frac{6a - 18}{a^{3} + 27} =\]
\[= \frac{(a - 3)(a + 3) - 6 \cdot (a - 3)}{a^{3} + 27} =\]
\[= \frac{(a - 3)(a + 3 - 6)}{a^{3} + 27} =\]
\[= \frac{(a - 3)(a - 3)}{a^{3} + 27}\]
\[2)\ \frac{(a - 3)(a - 3)}{a^{3} + 27} \cdot \frac{4 \cdot \left( a^{3} + 27 \right)}{5 \cdot (a - 3)} =\]
\[= \frac{4}{5} \cdot (a - 3).\]
\[\textbf{б)}\ \frac{ab^{2} - a^{2}b}{a + b} \cdot \frac{a + \frac{\text{ab}}{a - b}}{a - \frac{\text{ab}}{a + b}} =\]
\[= \frac{\text{ab}(b - a)}{a + b} \cdot \frac{1 + \frac{b}{a + b}}{1 - \frac{b}{a + b}} =\]
\[= \frac{\text{ab}(b - a)}{a + b} \cdot \frac{\frac{a - b + b}{a - b}}{\frac{a + b - b}{a + b}} =\]
\[= \frac{\text{ab}(b - a)}{a + b} \cdot \frac{a}{a - b} \cdot \frac{a + b}{a} =\]
\[= - ab.\]
\[\boxed{\text{751.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\frac{1}{8}x³ = 1\]
\[x^{3} = 8\]
\[x³ = 2³\]
\[x = 2\]
\[Ответ:x = 2.\]
\[\textbf{б)}\ 1000x³ + 1 = 0\]
\[x^{3} = - \frac{1}{1000}\]
\[x^{3} = ( - 0,1)^{3}\]
\[x = - 0,1\]
\[Ответ:\ x = - 0,1.\]
\[\textbf{в)}\frac{1}{27}x³ = 0,001\]
\[\left( \frac{x}{3} \right)^{3} = {0,1}^{3}\]
\[\frac{x}{3} = 0,1\]
\[x = 0,3\]
\[Ответ:x = 0,3.\]
\[\textbf{г)}\frac{1}{9}x^{4} - 16 = 0\]
\[x^{4} = 144\]
\[x^{2} = 12\]
\[x = \pm \sqrt{12} = \pm 2\sqrt{3}\]
\[Ответ:\ x = \pm 2\sqrt{3}.\]
\[\textbf{д)}\ 1 + x^{5} = 0\]
\[x^{5} = ( - 1)^{5}\]
\[x = - 1\]
\[Ответ:\ x = - 1.\]
\[\textbf{е)}\ x^{8} - 16 = 0\]
\[x^{8} = 16\]
\[\left( x^{2} \right)^{4} = 2^{4}\]
\[x^{2} = 2\]
\[x = \pm \sqrt{2}\]
\[Ответ:\ x = \pm \sqrt{2}.\]