\[\boxed{\text{730\ (730).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[4,5x - 6 < 0\]
\[x < \frac{4}{3}\text{\ \ }\]
\[x < 1\frac{1}{3}\]
\[x \in \left( - \infty;1\frac{1}{3} \right).\]
\[2 - 14x > 0\]
\[x < \frac{1}{7}.\]
\[x \in \left( - \infty;\frac{1}{7} \right).\]
\[\boxed{\text{730.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[Любое\ квадратное\ уравнение\ \]
\[имеет\ хотя\ бы\ один\ корень\ \]
\[при\ условии,\ что\ D \geq 0;\ \ \]
\[D = b^{2} - 4ac \geq 0.\]
\[\textbf{а)}\ 10x² - 10x + m = 0\]
\[D = 10^{2} - 4 \cdot 10m =\]
\[= 100 - 40m,\]
\[10 \cdot (10 - 4m) \geq 0\]
\[4m \leq 10\]
\[m \leq 2,5.\]
\[Ответ:при\ m \leq 2,5.\]
\[\textbf{б)}\ mx² + 4x - 2 = 0\]
\[D = 4^{2} + 4 \cdot 2m = 16 + 8m,\]
\(16 + 8m \geq 0\)
\[m \geq - 2.\]
\[Ответ:при\ m \geq - 2.\]
\[\textbf{в)}\ 3x² + mx - 5 = 0\]
\[D = m^{2} + 4 \cdot 3 \cdot 5 = m^{2} + 60,\]
\[m^{2} + 60 \geq 0 \Longrightarrow\]
\[\Longrightarrow верно\ при\ любом\ \text{m.}\]
\[Ответ:при\ m - лбюбое\ число.\]
\[\textbf{г)}\ 2x² - mx + 2 = 0\]
\[D = m^{2} - 4 \cdot 2 \cdot 2 = m^{2} - 16,\]
\[m^{2} - 16 \geq 0\]
\[m^{2} \geq 16\]
\[Ответ:при\ m \in ( - \infty; - 4\rbrack \cup \lbrack 4; + \infty).\]