\[\boxed{\text{674}\text{\ (674)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[Пусть\ стороны\ треугольника - a_{1},a_{2},a_{3}.\ Тогда\ периметр\ равен:\]
\[P = a_{1} + a_{2} + a_{3} = 24\ см.\]
\[a_{2} = a_{1} + d,\ \ a_{3} = a_{1} + 2d.\]
\[a_{1} + a_{2} + a_{3} = a_{1} + a_{1} + d + a_{1} + 2d = 3a_{1} + 3d = 3 \cdot \left( a_{1} + d \right) = 24;\]
\[a_{1} + d = 8 \Longrightarrow a_{2} = 8;\]
\[a_{1} + 8 + a_{3} = 24 \Longrightarrow a_{1} + a_{3} = 16 \Longrightarrow a_{1} = 16 - a_{3};\]
\[a_{1} + a_{2} > a_{3};\ \ \ a_{1} + 8 > a_{3};\ \ a_{3} + 8 > a_{1} \Longrightarrow по\ свойствам\ треугольника.\]
\[\Longrightarrow a_{1} \in \left\{ 5;6;7;8;9;10;11 \right\},\ \ a_{3} \in \left\{ 5;6;7;8;9;10;11 \right\}.\]
\[\boxed{\text{674.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[b_{n} = b_{1} \cdot q^{n - 1},\ \ \]
\[b_{n + 1} = b_{1} \cdot q^{n},\ \ \]
\[b_{n + 1} - b_{n} = b_{1} \cdot q^{n - 1}(q - 1)\]
\[\textbf{а)}\ b_{1} > 0,\ \ q > 1 \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} b_{1} > 0\ \ \ \ \ \ \\ q - 1 > 0 \\ q^{n - 1} > 0\ \\ \end{matrix} \right.\ \Longrightarrow b_{1} \cdot q^{n - 1}(q - 1) > 0,\]
\[1;2;4;6;\ldots\]
\[\textbf{б)}\ b_{1} > 0,\ \ 0 < q < 1 \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} b_{1} > 0\ \ \ \ \ \ \\ q - 1 < 0 \\ q^{n - 1} > 0\ \\ \end{matrix} \right.\ \Longrightarrow b_{1} \cdot q^{n - 1}(q - 1) < 0,\]
\[27;9;3;1;\ldots.\]
\[\textbf{в)}\ b_{1} < 0,\ \ q > 1 \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} b_{1} < 0\ \ \ \ \ \ \\ q - 1 > 0 \\ q^{n - 1} > 0\ \\ \end{matrix} \right.\ \Longrightarrow b_{1} \cdot q^{n - 1}(q - 1) < 0,\]
\[- 3;\ - 6;\ - 12;\ - 24;\ldots.\]
\[\textbf{г)}\ b_{1} < 0,\ \ 0 < q < 1 \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} b_{1} < 0\ \ \ \ \ \ \\ q - 1 < 0 \\ q^{n - 1} > 0\ \\ \end{matrix} \right.\ \Longrightarrow b_{1} \cdot q^{n - 1}(q - 1) > 0.\]
\[- 27;\ - 9;\ - 3;\ - 1;\ldots.\]