\[\boxed{\text{624}\text{\ (624)}\text{.}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[c_{n} = c_{1} \cdot q^{n - 1};\]
\[\textbf{а)}\ c_{6} = c_{1} \cdot q^{5};\]
\[\textbf{б)}\ c_{20} = c_{1} \cdot q^{19};\]
\[\textbf{в)}\ c_{125} = c_{1} \cdot q^{124};\ \]
\[\textbf{г)}\ c_{k} = c_{1} \cdot q^{k - 1};\]
\[\textbf{д)}\ c_{k + 3} = c_{1} \cdot q^{k + 2};\]
\[\textbf{е)}\ c_{2k} = c_{1} \cdot q^{2k - 1}.\]
\[\boxed{\text{624.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[b_{1} > 0,\ \ b_{2} > 0,\ \ldots,\ b_{n} > 0\ \]
\[b_{1} + b_{2} = b_{1} + b_{1} \cdot q = 8\]
\[b_{3} + b_{4} = b_{1} \cdot q^{2} + b_{1} \cdot q^{3} = 72;\]
\[\left\{ \begin{matrix} b_{1}(1 + q) = 8\ \ \ \ \ \ \ \ \ \ \\ b_{1} \cdot q^{2} \cdot (1 + q) = 72 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} q^{2} = 9\ \ \ \ \ \ \ \\ b_{1} = \frac{8}{q + 1} \\ \end{matrix} \Longrightarrow \right.\ \left\{ \begin{matrix} q = 3\ \ \\ b_{1} = 2 \\ \end{matrix} \right.\ ,\ \ \]
\[q = - 3 \Longrightarrow не\ подходит\ \]
\[по\ условию.\]
\[S_{n} = \frac{b_{1} \cdot \left( q^{n} - 1 \right)}{q - 1} =\]
\[= 2 \cdot \frac{3^{n} - 1}{2} = 3^{n} - 1 = 242 \Longrightarrow\]
\[\Longrightarrow 3^{n} = 243 \Longrightarrow n = 5.\]
\[Ответ:\ \ 5\ членов\ прогрессии\ \]
\[нужно\ сложить.\]