\[\boxed{\text{600\ (600).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ x³ + 4x² - 32x = 0\]
\[x\left( x^{2} + 4x - 32 \right) = 0\]
\[1)\ x_{1} = 0;\]
\[2)\ x² + 4x - 32 = 0\ \ \]
\[по\ теореме\ Виета:\]
\[x_{2} = - 8,\ \ x_{3} = 4.\]
\[\textbf{б)}\ x³ - 10x^{2} + 4x - 40 = 0\]
\[x^{2}(x - 10) + 4 \cdot (x - 10) = 0\]
\[\left( x^{2} + 4 \right)(x - 10) = 0\]
\[x = 10.\]
\[Ответ:\ \ \ а) - 8;0;4;\ \ б)\ 10.\]
\[\boxed{\text{600.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[x_{1} = 2,\ \ x_{5} = x_{1} \cdot q^{4} = 162,\]
\[\ \ 2q^{4} = 162,\ \ \]
\[q^{4} = 81 \Longrightarrow q = \pm 3;\]
\[1)\ q = 3,\ \ x_{1} = 2,\ \ \]
\[x_{2} = x_{1} \cdot q = 2 \cdot 3 = 6;\]
\[x_{3} = x_{1} \cdot q^{2} = 2 \cdot 3^{2} = 2 \cdot 9 =\]
\[= 18;\]
\[x_{4} = x_{1} \cdot q^{3} = 2 \cdot 3^{3} = 54;\ \ \ \]
\[\ x_{5} = 162.\]