\[\boxed{\text{478\ (478).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ y = - 3,5x^{2} - 2,6\ \]
\[a = - 3,5 < 0 \rightarrow парабола,\]
\[\ ветви\ вниз.\]
\[x_{b} = - \frac{b}{2a} = \frac{0}{7} = 0;\]
\[y_{b} = - 3,5 \cdot 0 - 2,6 = - 2,6.\]
\[(0; - 2,6) - вершина\ параболы.\]
\[График\ функции\ расположен\ \]
\[в\ \text{III\ }и\ \text{IV\ }четвертях.\]
\[В\ І\ и\ ІІ\ четвертях\ нет\ ни\ одной\ \]
\[точки\ этого\ графика.\]
\[\textbf{б)}\ y = x^{2} - 12x + 34\]
\[a = 1 > 0 - парабола,\ \]
\[ветви\ вверх.\]
\[x_{b} = - \frac{b}{2a} = \frac{12}{2} = 6;\]
\[y_{b} = 36 - 72 + 34 = - 2.\]
\[(3;7) - вершина\ параболы.\]
\[x^{2} - 12x + 34 = 0\]
\[D_{1} = 36 - 34 = 2 > 0\]
\[x_{1,2} = 6 \pm \sqrt{2} - обе\ точки\ \]
\[находятся\ в\ первой\ четверти.\]
\[В\ ІІІ\ четверти\ нет\ ни\ одной\ \]
\[точки\ этого\ графика.\]
\[\boxed{\text{478.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ \left\{ \begin{matrix} x^{2} + y^{2} = 25 \\ xy = 12\ \ \ \ \ \ \ \ \\ \end{matrix} \Longrightarrow \right.\ \]
\[\Longrightarrow \left\{ \begin{matrix} x^{2} + y^{2} = 25 \\ 2xy = 24\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x^{2} + y^{2} - 2xy = 25 - 24 \\ xy = 12\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x^{2} - 2xy + y^{2} = 1 \\ xy = 12\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} (x - y)^{2} = 1 \\ xy = 12\ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x - y = \pm 1 \\ xy = 12\ \ \ \ \ \ \ \\ \end{matrix} \right.\ ;\]
\[1)\ \left\{ \begin{matrix} x - y = 1 \\ xy = 12\ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x = y + 1\ \ \ \ \ \ \ \\ y(y + 1) = 12 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x = y + 1\ \ \ \ \ \ \ \ \ \ \ \ \\ y^{2} + y - 12 = 0 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} y_{1} = - 4 \\ x_{1} = - 3 \\ \end{matrix} \right.\ \ \ \ \ или\ \left\{ \begin{matrix} y_{2} = 3 \\ x_{2} = 4. \\ \end{matrix} \right.\ \]
\[2)\ \left\{ \begin{matrix} x - y = - 1 \\ xy = 12\ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x = y - 1\ \ \ \ \ \ \\ y(y - 1) = 12 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x = y - 1\ \ \ \ \ \ \ \ \ \ \ \\ y^{2} - y - 12 = 0 \\ \end{matrix} \right.\ \]
\[\Longrightarrow \left\{ \begin{matrix} y_{1} = 4 \\ x_{1} = 3 \\ \end{matrix} \right.\ \ \ \ или\ \ \ \left\{ \begin{matrix} y_{2} = - 3 \\ x_{2} = - 4. \\ \end{matrix} \right.\ \]
\[\textbf{б)}\ \left\{ \begin{matrix} x^{2} + y^{2} = 26 \\ x + y = 6\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x = 6 - y\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 36 - 12y + y^{2} + y^{2} = 26 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x = 6 - y\ \ \ \ \ \ \ \ \ \ \ \\ y^{2} - 6y + 5 = 0 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} y_{1} = 1 \\ x_{1} = 5 \\ \end{matrix} \right.\ \text{\ \ \ \ \ }или\ \left\{ \begin{matrix} y_{2} = 5 \\ x_{2} = 1. \\ \end{matrix} \right.\ \]
\[Ответ:а)\ ( - 3;\ - 4);(4;3);\]
\[(3;4);( - 4;\ - 3);\]
\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ б)\ (5;1);(1;5).\]