\[\boxed{\text{440\ (440).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \left\{ \begin{matrix} x^{2} + y^{2} = 16 \\ x - y = 4\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x = y + 4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ (y + 4)^{2} + y^{2} = 16 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x = y + 4\ \ \ \ \ \\ y(y + 4) = 0 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} y_{1} = 0 \\ x_{1} = 4 \\ \end{matrix} \right.\ \text{\ \ }или\ \ \left\{ \begin{matrix} y_{2} = - 4 \\ x_{2} = 0\ \ \ . \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} x^{2} + y^{2} = 16 \\ x - y = 4\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ }\left\{ \begin{matrix} x^{2} + y^{2} = 16 \\ y = x - 4\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\textbf{б)}\ \left\{ \begin{matrix} y = x^{2} + 1 \\ x + 2y = 5 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} y = x^{2} + 1\ \ \ \ \ \ \ \ \ \\ 2x^{2} + x - 3 = 0 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x_{1} = 1 \\ y_{1} = 2 \\ \end{matrix} \right.\ \text{\ \ \ }или\ \ \ \left\{ \begin{matrix} x_{2} = - 1,5 \\ y_{2} = 3,25. \\ \end{matrix} \right.\ \]
\[2x^{2} + x - 3 = 0\]
\[D = 1 + 24 = 25\]
\[x_{1} = \frac{- 1 + 5}{4} = 4;\ \ \ \]
\[x_{2} = \frac{- 1 - 5}{4} = - 1,5.\]
\[\left\{ \begin{matrix} y = x^{2} + 1 \\ x + 2y = 5 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\left\{ \begin{matrix} y = x^{2} + 1 \\ 2y = 5 - x \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} y = x^{2} + 1\ \ \ \ \ \ \ \\ y = 2,5 - 0,5x \\ \end{matrix} \right.\ \]
\[Ответ:а)\ (4;0);(0;\ - 4);\ \ \ \]
\[\textbf{б)}\ (1;2);\ \ ( - 1,5;3,25).\]
\(\boxed{\text{440.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\)
\[Пусть\ \text{x\ }см^{3} - объем\ олова,\ \]
\[а\ y\ см^{3} - меди.\]
\[Объем\ куска\ олова\ на\ 20\ см^{3}\ \]
\[больше\ объема\ куска\ меди:\]
\[x = y - 20.\]
\[Плотность\ олова\ на\ 1,6\ \frac{г}{см^{3}}\ \]
\[больше\ плотности\ меди:\]
\[\frac{356}{x} - \frac{438}{y} = 1,6.\]
\[Составим\ систему\ уравнений:\]
\[\left\{ \begin{matrix} \frac{356}{x} = \frac{438}{y} + 1,6 \\ x = y - 20\ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]
\[1,6y^{2} + 50y - 8760 = 0\]
\[D_{1} = 25^{2} + 1,6 \cdot 8760 = 121^{2}\]
\[y_{1,2} = \frac{- 25 \pm 121}{1,6} = 60;\ - 91,25.\]
\[Так\ как\ y > 0:\]
\[y = 60 \Longrightarrow x = 40.\]
\[Ответ:40\ см^{3}\ и\ 60\ см^{3}.\]