\[\boxed{\text{438\ (438).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ \left\{ \begin{matrix} x^{2} - 4 = 0 \\ xy = 6\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} x^{2} = 4 \\ xy = 6 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x = \pm 2 \\ y = \frac{6}{x}\text{\ \ \ \ } \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} x_{1} = 2 \\ y_{1} = 3 \\ \end{matrix} \right.\ \text{\ \ }или\ \]
\[\ \left\{ \begin{matrix} x_{2} = - 2 \\ y_{2} = - 3 \\ \end{matrix} \right.\ .\]
\[\textbf{б)}\ \left\{ \begin{matrix} x^{2} - 5x + 6 = 0 \\ y^{2} - 6y + 5 = 0 \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} (x - 2)(x - 3) = 0 \\ (y - 1)(y - 5) = 0 \\ \end{matrix} \right.\ \]
\[x^{2} - 5x + 6 = 0\]
\[x_{1} + x_{2} = 5;\ \ \ \ x_{1} \cdot x_{2} = 6\]
\[x_{1} = 2;\ \ \ \ \ x_{2} = 3.\]
\[y^{2} - 6y + 5 = 0\]
\[D_{1} = 9 - 5 = 4\]
\[y_{1} = 3 + 2 = 5;\ \ \]
\[\ y_{2} = 3 - 2 = 1.\]
\[\left\{ \begin{matrix} x_{1} = 2 \\ y_{1} = 1 \\ \end{matrix} \right.\ ;\ \ \ \ \left\{ \begin{matrix} x_{2} = 3 \\ y_{2} = 1 \\ \end{matrix} \right.\ ;\ \ \ \ \]
\[\left\{ \begin{matrix} x_{3} = 2 \\ y_{3} = 5 \\ \end{matrix} \right.\ ;\ \ \ \ \left\{ \begin{matrix} x_{4} = 3 \\ y_{4} = 5 \\ \end{matrix} \right.\ .\]
\[Ответ:а)\ (2;3);( - 2;\ - 3);\ \]
\[\ б)\ (2;1);(3;1);(2;5);(3;5).\]
\(\boxed{\text{438.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\)
\[Пусть\ x\frac{км}{ч} - скорость\ \]
\[мотоциклиста,\ который\]
\[\ приехал\ раньше.\]
\[\text{y\ }\frac{км}{ч} - скорость\ второго\ \]
\[мотоциклиста.\ \]
\[30\ мин = 0,5\ часа.\]
\[Тогда:\ \ 0,5x + 0,5y = 50.\ \ \]
\[Время,\ которое\ на\ весь\]
\[\ путь\ затратит\ \]
\[первый:\ \frac{50}{x}\ часов.\ А\ второй\ \]
\[потратит\ \frac{50}{y}\ часов.\ 25\ мин =\]
\[= \frac{25}{60} = \frac{5}{12}\ ч.\]
\[Составим\ систему\ уравнений:\]
\[\left\{ \begin{matrix} 0,5x + 0,5y = 50 \\ \frac{50}{x} + \frac{25}{60} = \frac{50}{y}\text{\ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x + y = 100 \\ \frac{2}{x} + \frac{1}{60} = \frac{2}{y}\text{\ \ \ } \\ \end{matrix} \right.\ \Longrightarrow\]
\[\Longrightarrow \left\{ \begin{matrix} x = 100 - y\ \ \ \ \ \ \ \ \ \\ \frac{2}{100 - y} + \frac{1}{60} = \frac{2}{y} \\ \end{matrix} \right.\ \Longrightarrow\]
\[y^{2} - 340y + 12000 = 0\]
\[y_{1} + y_{2} = 340;\ \ y_{1} \cdot y_{2} = 12\ 000\]
\[y_{1} = 40;\ \ \ y_{2} = 300.\]
\[\left\{ \begin{matrix} y_{1} = 40 \\ x_{1} = 60 \\ \end{matrix} \right.\ \ \ \ или\ \ \]
\[\left\{ \begin{matrix} y_{2} = 300\ \ \\ x_{2} = - 200 \\ \end{matrix} \right.\ \Longrightarrow но\ x > 0 \Longrightarrow\]
\[\Longrightarrow не\ подходит.\]
\[Ответ:40\ \frac{км}{ч}\ и\ \ 60\frac{км}{ч}.\]