\[\boxed{\text{364\ (364).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ \frac{3y^{3} + 12y^{2} - 27y - 108}{y^{2} - 16} = 0;\]
\[ОДЗ:\ \ \ y^{2} - 16 \neq 0,\ \ y^{2} \neq 16,\ \ \]
\[y \neq \pm 4.\]
\[3y^{3} + 12y^{2} - 27y - 108 = 0|\ :3\]
\[y^{3} + 4y^{2} - 9y - 36 = 0\]
\[y^{2}(y + 4) - 9 \cdot (y + 4) = 0\]
\[\left( y^{2} - 9 \right)(y + 4) = 0\]
\[1)\ y^{2} - 9 = 0\]
\[y^{2} = 9\]
\[y = \pm 3.\]
\[2)\ y + 4 = 0\]
\[y = - 4 \Longrightarrow не\ удовлетворяет\ \]
\[ОДЗ.\]
\[\textbf{б)}\ \frac{y^{3} + 6y^{2} - y - 6}{y^{3} - 36y} = 0;\]
\[ОДЗ:\ \ y^{3} - 36y \neq 0;\ \ \ \ \]
\[y\left( y^{2} - 36 \right) \neq 0;\]
\[y(y - 6)(y + 6) \neq 0;\ \ \]
\[y \neq 0;\ y \neq \pm \ 6.\]
\[y^{3} + 6y^{2} - y - 6 = 0\]
\[y^{2}(y + 6) - (y + 6) = 0\]
\[\left( y^{2} - 1 \right)(y + 6) = 0\]
\[(y - 1)(y + 1)(y + 6) = 0\]
\[y_{1} = 1;\ \ y_{2} = - 1;\ \ y_{3} = - 3 \Longrightarrow\]
\[\Longrightarrow не\ удовлетворяет\ ОДЗ.\]
\[Ответ:а) - 3;3;\ \ \ б) - 1;1.\]
\[\boxed{\text{364.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ 2y - 0,5x^{2} = 0\]
\[2y = 0,5x^{2}\]
\[y = \frac{1}{4}x^{2}.\]
\[\textbf{б)}\ x^{2} - 3y = 6\]
\[3y = x^{2} - 6\]
\[y = \frac{1}{3}x^{2} - 2.\]
\[\textbf{в)}\ 4x^{2} = 8 - y\]
\[y = - 4x^{2} + 8.\]
\[\textbf{г)} - 5x^{2} + 2y = 3\]
\[2y = 5x^{2} + 3\]
\[y = 2,5x^{2} + 1,5.\ \]