\[\boxed{\text{353\ (353).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
\[\textbf{а)}\ (a - 2)(a + 2)\left( a^{2} + 4 \right) =\]
\[= 25a^{2} - 16\]
\[\left( a^{2} - 4 \right)\left( a^{2} + 4 \right) = 25a^{2} - 16\]
\[a^{4} - 16 = 25a^{2} - 16\]
\[a^{4} - 25a^{2} = 0\]
\[a^{2}\left( a^{2} - 25 \right) = 0\]
\[a^{2}(a - 5)(a + 5) = 0\]
\[a_{1} = 0;\ \ a_{2} = 5;\ \ a_{3} = - 5.\]
\[Ответ:a = 0;\ \ a = \pm 5.\]
\[\textbf{б)}\ (x - 1)(x + 1)\left( x^{2} + 1 \right) =\]
\[= 6x^{2} - 1\]
\[\left( x^{2} - 1 \right)\left( x^{2} + 1 \right) = 6x^{2} - 1\]
\[x^{4} - 1 = 6x^{2} - 1\]
\[x^{4} - 6x^{2} = 0\]
\[x^{2}\left( x^{2} - 6 \right) = 0\]
\[x^{2}\left( x - \sqrt{6} \right)\left( x + \sqrt{6} \right) = 0\]
\[x_{1} = 0;\ \ x_{2} = \sqrt{6};\ \ x_{3} = - \sqrt{6}.\]
\[Ответ:x = 0;\ \ x = \pm \sqrt{6}.\]
\[\boxed{\text{353.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ \left( x^{2} + 17 \right)(x - 6)(x + 2) < 0\]
\[x^{2} + 17 > 0\ при\ любом\ x\]
\[\Longrightarrow (x + 2)(x - 6) < 0\]
\[x \in ( - 2;6).\]
\[\textbf{б)}\ \left( 2x^{2} + 1 \right) \cdot x \cdot (x - 4) > 0\]
\[так\ как\ 2x^{2} + 1 > 0\]
\[\Longrightarrow x(x - 4) > 0\]
\[x \in ( - \infty;0) \cup (4; + \infty).\]
\[\textbf{в)}\ (x - 1)^{2}(x - 24) < 0\]
\[(x - 1)^{2} \geq 0\ при\ любом\ \]
\[значении\ x;\]
\[x - 24 < 0;\ \ \ x \neq 1.\]
\[x \in ( - \infty;1) \cup (1;24).\]
\[\textbf{г)}\ (x + 7)(x - 4)^{2}(x - 21) > 0\]
\[(x - 4)^{2} \geq 0\ при\ любом\ x;\]
\[(x + 7)(x - 21) > 0;\ \ \ \ x \neq 4.\]
\[x \in ( - \infty; - 7) \cup (21; + \infty).\]