Решебник по алгебре 9 класс Макарычев Задание 336

Авторы:
Год:2020-2021-2022
Тип:учебник

Задание 336

Выбери издание
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение
 
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение
Издание 1
Алгебра 9 класс Макарычев, Миндюк, Нешков Просвещение

\[\boxed{\text{336\ (}\text{н}\text{).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[\textbf{а)}\ \frac{x - 1}{x - 3} \geq 0\]

\[\left\{ \begin{matrix} (x - 1)(x - 3) \geq 0 \\ x \neq 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \ \]

A picture containing line, screenshot, diagram, design Description automatically generated

\[x \in ( - \infty;1\rbrack \cup (3; + \infty).\]

\[\textbf{б)}\ \frac{x + 6}{x - 5} \leq 0\]

\[\left\{ \begin{matrix} (x + 6)(x - 5) \leq 0 \\ x \neq 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

A picture containing line, diagram, screenshot Description automatically generated

\[\ x \in \lbrack - 6;5).\]

\[\textbf{в)}\ \frac{2 - x}{x} \geq 0\]

\[\left\{ \begin{matrix} x(2 - x) \geq 0 \\ x \neq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} x(x - 2) \leq 0 \\ x \neq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

A picture containing line, diagram Description automatically generated

\[\ x \in (0;2\rbrack.\]

\[\textbf{г)}\ \frac{3 - 2x}{x - 1} \leq 0\]

\[\left\{ \begin{matrix} (3 - 2x)(x - 1) \leq 0 \\ x \neq 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow \ \]

\[\Longrightarrow \left\{ \begin{matrix} 2 \cdot (x - 1)(x - 1,5) \geq 0 \\ x \neq 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

A picture containing line, diagram, plot, font Description automatically generated

\[x \in ( - \infty;1) \cup \lbrack 1,5; + \infty).\]

\[\textbf{д)}\ \frac{7x - 2}{1 - x} \geq 0\]

\[\left\{ \begin{matrix} (7x - 2)(1 - x) \geq 0 \\ 1 - x \neq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} 7 \cdot \left( x - \frac{2}{7} \right)(x - 1) \leq 0 \\ x \neq 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

A picture containing line, diagram, plot Description automatically generated

\[x \in \left\lbrack \frac{2}{7};1 \right).\]

\[\textbf{е)}\ \frac{1 - 11x}{2x - 3} \leq 0\]

\[\left\{ \begin{matrix} (1 - 11x)(2x - 3) \leq 0 \\ 2x - 3 \neq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \left\{ \begin{matrix} 11 \cdot 2 \cdot \left( x - \frac{1}{11} \right)(x - 1,5) \geq 0 \\ x \neq 1,5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

A picture containing line, diagram, plot, font Description automatically generated

\[x \in \left( - \infty;\frac{1}{11} \right\rbrack \cup (1,5; + \infty).\]

\[\boxed{\text{336\ (}\text{c}\text{).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]

\[\textbf{а)}\ \frac{x - 1}{x - 3} \geq 0\]

\[\left\{ \begin{matrix} (x - 1)(x - 3) \geq 0 \\ x \neq 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[\ x \in ( - \infty;1\rbrack \cup (3; + \infty).\]

\[\textbf{б)}\ \frac{x + 6}{x - 5} \leq 0\]

\[\left\{ \begin{matrix} (x + 6)(x - 5) \leq 0 \\ x \neq 5\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ }\]

\[x \in \lbrack - 6;5).\]

\[\textbf{в)}\ \frac{2 - x}{x} \geq 0\]

\[\left\{ \begin{matrix} x(2 - x) \geq 0 \\ x \neq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} x(x - 2) \leq 0 \\ x \neq 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ }\]

\[x \in (0;2\rbrack.\]

\[\textbf{г)}\ \frac{3 - 2x}{x - 1} \leq 0\]

\[\left\{ \begin{matrix} (3 - 2x)(x - 1) \leq 0 \\ x \neq 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \Longrightarrow\]

\[\Longrightarrow \ \left\{ \begin{matrix} 2 \cdot (x - 1)(x - 1,5) \geq 0 \\ x \neq 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]

\[x \in ( - \infty;1) \cup \lbrack 1,5; + \infty).\]

Издание 2
фгос Алгебра 9 класс Макарычев ФГОС, Миндюк Просвещение

\[\boxed{\text{336.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]

\[\textbf{а)}\ 2 \cdot \left( x^{2} + \frac{1}{x^{2}} \right) - \left( x + \frac{1}{x} \right) = 2\]

\[Пусть\ \ t = x + \frac{1}{x};\ \ \]

\[t^{2} = \left( x + \frac{1}{x} \right)^{2} = x^{2} + 2 + \frac{1}{x^{2}};\ \]

\[x^{2} + \frac{1}{x^{2}} = t^{2} - 2:\]

\[2 \cdot \left( t^{2} - 2 \right) - t = 2\]

\[2t^{2} - 4 - t - 2 = 0\]

\[2t^{2} - t - 6 = 0\]

\[D = 1 + 4 \cdot 2 \cdot 6 = 49\]

\[t_{1,2} = \frac{1 \pm 7}{4} = 2;\ - \frac{3}{2}\text{.\ }\]

\[1)\ x + \frac{1}{x} = 2\]

\[x^{2} - 2x + 1 = 0\ \ \]

\[(x - 1)^{2} = 0\ \ \]

\[x = 1.\]

\[2)\ x + \frac{1}{x} = - \frac{3}{2}\text{\ \ }\]

\[2x^{2} + 3x + 2 = 0\]

\[D = 9 - 4 \cdot 2 \cdot 2 < 0 \Longrightarrow\]

\[\Longrightarrow корней\ нет.\]

\[Ответ:x = 1.\]

\[\textbf{б)}\ \ 9x^{2} - 18x + \frac{9}{x^{2}} - \frac{18}{x} = 22\]

\[9 \cdot \left( x^{2} + \frac{1}{x^{2}} \right) - 18 \cdot \left( x + \frac{1}{x} \right) =\]

\[= 22.\]

\[Пусть\ \ \ t = x + \frac{1}{x};\ \ \]

\[x^{2} + \frac{1}{x^{2}} = t^{2} - 2:\]

\[9 \cdot \left( t^{2} - 2 \right) - 18t = 22\]

\[9t^{2} - 18 - 18t - 22 = 0\]

\[9t^{2} - 18t - 40 = 0\]

\[D_{1} = 81 + 9 \cdot 40 = 441\]

\[t_{1,2} = \frac{9 \pm 21}{9} = - \frac{4}{3};\frac{10}{3}\text{.\ }\]

\[1)\ x + \frac{1}{x} = \frac{10}{3}\]

\[3x^{2} - 10x + 3 = 0\]

\[D = 25 - 9 = 16\]

\[x_{1,2} = \frac{5 \pm 4}{3} = 3;\frac{1}{3}\text{.\ }\]

\[2)\ x + \frac{1}{x} = - \frac{4}{3}\ \]

\[3x^{2} - 4x + 3 = 0\]

\[D = 4 - 3 \cdot 3 < 0 \Longrightarrow\]

\[\Longrightarrow корней\ нет.\]

\[Ответ:\ x = \frac{1}{3};\ \ x = 3.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам