\[\boxed{\text{333\ (333).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ (2x + 5)(x - 17) \geq 0\]
\[2 \cdot (x + 2,5)(x - 17) \geq 0\]
\[x \in ( - \infty; - 2,5\rbrack \cup \lbrack 17; + \infty).\]
\[\textbf{б)}\ x(x + 9)(2x - 8) \geq 0\]
\[2x(x + 9)(x - 4) \geq 0\]
\[x \in \lbrack - 9;0\rbrack \cup \lbrack 4;\ + \infty).\]
\[\boxed{\text{333.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\textbf{а)}\ \frac{x^{2} + 1}{x} + \frac{x}{x^{2} + 1} = 2\frac{1}{2}\]
\[Пусть\ \ \ \ \ t = \frac{x^{2} + 1}{x},\ тогда\ \ \ \ \]
\[t + \frac{1}{t} = 2\frac{1}{2},\ \]
\[\frac{t^{2} + 1}{t} = \frac{5}{2},\ \ 2t^{2} + 2 = 5t,\ \]
\[2t^{2} - 5t + 2 = 0\]
\[D = 25 - 4 \cdot 2 \cdot 2 = 9\]
\[t_{1,2} = \frac{5 \pm 3}{4} = 2;\frac{1}{2};\ \]
\[1)\ \frac{x^{2} + 1}{x} = 2,\]
\[\text{\ \ }x^{2} - 2x + 1 = 0,\ \ \]
\[(x - 1)^{2} = 0,\ \ x_{1} = 1;\]
\[2)\ \frac{x^{2} + 1}{x} = \frac{1}{2},\]
\[\ \ 2x² - x + 2 = 0\]
\[D = 1 - 4 \cdot 2 \cdot 2 < 0 \Longrightarrow\]
\[\Longrightarrow корней\ нет.\]
\[\textbf{б)}\ \frac{x^{2} + 2}{3x - 2} + \frac{3x - 2}{x^{2} + 2} = 2\frac{1}{6}\]
\[Пусть\ \ t = \frac{x^{2} + 2}{3x - 2},\ \ тогда\ \]
\[\ t + \frac{1}{t} = 2\frac{1}{6},\]
\[\frac{t^{2} + 1}{t} = \frac{13}{6},\]
\[\ \ 6t^{2} - 13t + 6 = 0,\]
\[D = 13² - 4 \cdot 6 \cdot 6 = 25\]
\[t_{1,2} = \frac{13 \pm 5}{12} = \frac{3}{2};\frac{2}{3};\]
\[1)\ \frac{x^{2} + 2}{3x - 2} = \frac{3}{2},\]
\[\ \ 2x^{2} + 4 = 9x - 6,\]
\[\ \ 2x^{2} - 9x + 10 = 0,\]
\[D = 81 - 4 \cdot 2 \cdot 10 = 1\]
\[x_{1,2} = \frac{9 \pm 1}{4},\ \ x_{1} = 2,\]
\[\text{\ \ }x_{2} = 2,5;\]
\[2)\ \frac{x^{2} + 2}{3x - 2} = \frac{2}{3},\]
\[\ \ 3x^{2} + 6 = 6x - 4,\]
\[\ \ 3x^{2} - 6x + 10 = 0\]
\[D = 9 - 3 \cdot 10 < 0 \Longrightarrow\]
\[\Longrightarrow корней\ нет.\]
\[Ответ:\ \ \ а)\ 1;\ \ \ \ б)\ 2;2,5.\]