\[\boxed{\text{328\ (328).}\text{\ }\text{Еуроки\ -\ ДЗ\ без\ мороки}}\]
Пояснение.
Решение.
\[\textbf{а)}\ (x + 48)(x - 37)(x - 42) > 0\]
\[x \in ( - 48;37) \cup (42; + \infty).\]
\[\textbf{б)}\ (x + 0,7)(x - 2,8)(x - 9,2) < 0\]
\[x \in ( - \infty;\ - 0,7) \cup (2,8;9,2).\]
\[\boxed{\text{328.}\text{\ }\text{ОК\ ГДЗ\ -\ домашка\ на\ 5}}\]
\[\frac{1}{x + 2} - \frac{1}{x + 4} = \frac{1}{x + 8} - \frac{1}{x + 20}\]
\[\frac{x + 4 - x - 2}{(x + 2)(x + 4)} =\]
\[= \frac{x + 20 - x - 8}{(x + 8)(x + 20)}\]
\[\frac{2}{x^{2} + 6x + 8} = \frac{12}{x^{2} + 28x + 160}\]
\[x^{2} + 28x + 160 =\]
\[= 6 \cdot \left( x^{2} + 6x + 8 \right)\]
\[x^{2} + 28x + 160 =\]
\[= 6x^{2} + 36x + 48\]
\[5x^{2} + 8x - 112 = 0\]
\[D = 16 + 5 \cdot 112 = 576 = 24^{2}\]
\[x_{1,2} = \frac{- 4 \pm 24}{5} = 4;\ - 5,6.\]
\[Ответ:\ - 5,6;\ \ 4.\]